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Abstract—Diophantine Frequency Synthesis (DFS), a number 
theoretic approach to the design of very high resolution and 
agile frequency synthesizers was introduced at the IEEE 
Frequency Control Symposium of 2006, [1]. Since DFS uses 
frequency addition (and/or subtraction), concerns for the impact 
of mixing spurs in the spectral purity was raised.  

Further work has been performed to address this issue and is 
reported in this paper. The focus has been on basic DFS 
architecture targeting micro-phase type applications. The design 
goal has been to achieve 100 dB spurious free dynamic range 
(SPFD) with minimal circuit complexity.  

The results of the examination demonstrate that the use of DFS 
does not impart any extraordinary design constraints to spectral 
purity from that of other topology choices. In fact, the flexibility 
of the design technique from its applied math basis allows this 
demonstration synthesizer to be realized with simple and 
expedient construction. 

I. INTRODUCTION 
Frequency synthesizers are essential elements to modern 

navigation and communication systems, as they provide the 
means to align and synchronize distributed transmitters and 
receivers with high signal purity. The degree of 
synchronization and signal purity is directly proportional to 
the quality of service offered by optical data networks and 
wireless communications. When the quality of service is 
compromised, the economic return of the transmission 
infrastructure cannot be optimized. 

The previous art in frequency synthesizer design requires 
undesirable trade-offs among these four essential aspects: 

Range—the magnitude of output frequency variation 

Resolution—the accuracy to which the synthesized frequency 
can be aligned to the desired channel 

Agility—the speed required for the synthesizer to change from 
one frequency to the next 

Spectral Purity—the fidelity of the output tone in both noise 
and unwanted spurious tones. 

In 2006, a novel approach, known as Diophantine 
Frequency Synthesis (DFS) [1,5], was introduced which we 
believe alleviates the conventional trades in performance for 
frequency synthesizer design without significantly taxing 
system complexity or resources. Our motivation for this paper 
emerged from collegial exchange in reference to the claim that 
DFS should provide high spectral purity, even in synthesizers 
with much less than 0.1 PPM resolution steps, because of its 
design property of allowing phase-comparator frequencies 
orders of magnitude higher than resolution. In general, we 
make this claim in comparison with other fine frequency 
synthesizer methods such as direct digital synthesis (DDS) or 
fractional-N modulators which are known to present a high 
degree of unwanted spurious into the output spectrum through 
the fundamental process they impart on the input reference 
signal [2].  

DFS uses only exactly-periodic signals, without employing 
dithering, interpolation, pulse removal or any other 
approximately-periodic waveform that may corrupt the near-in 
spectrum. Our purpose here is to show that high spectral 
purity can be achieved in a practical, high frequency 
resolution DFS demonstration synthesizer since it presents no 
discontinuity of the reference frequency phase, such as DDS 
or fractional-N, and unlike these methods, DFS does not 
require any special devices such as high resolution digital to 
analog converters, accumulators, sigma-delta modulator to 
control the spurious level of the output signal. Since 
simulation of spectral purity is difficult, we pursued a physical 
demonstration. 

However, like multiple loop PLL synthesizer architectures, 
DFS does require mixing (or multiplication) to achieve the 
output signal. This means that DFS synthesizers may suffer 
from unwanted spurious if attention to the circuit design is not 
adequately respected. Our design goal of high spectral purity 
with less than -100 dBc spurious free dynamic range (SPFD) 
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is a significant challenge to any synthesizer approach and our 
desire is to show that DFS presents no unique design related 
constraints. Rather DFS’ flexibility gives an advantage to 
achieving this level of performance in fine step resolution 
frequency synthesis. 

II. DFS – ELEMENTS OF THE THEORY 
DFS is a number-theoretic approach to frequency synthesis 
based on mathematical properties of integer numbers and 
linear Diophantine equations [5]. (By definition, a 
Diophantine equation is an algebraic equation whose solutions 
are required to be integers) [4]. 

DFS results in high-level architectures using two or more 
individual PLLs. It distributes the desired output frequency 
resolution among these constituent PLLs in such a manner that 
the resultant output fractional-frequency resolution is equal to 
the product of the constituent PLLs’ fractional-frequency 
resolutions. Consequently, this property of DFS allows for the 
output frequency step to be made (arbitrarily) small without 
using large prescalers, ( iN ’s), or small PLL reference 
frequencies ( ) inii fNm . These are illustrated in the following 
examples. 

A.  Fundamental Concepts of DFS 
DFS considers a PLL as a multiplier of the input frequency 

inf  by a rational number ii Nm , as shown in Fig.1. 
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Figure 1.  Two PLL DFS architecture 

The sum or differences of the PLL-output frequencies 21, ff  
can be generated by appropriate mixing, or more involved 
Cartesian multiplication etc, to produce the output signal outf .  

Note that the frequency resolution of the individual PLLs 
in Fig. 1 equals PLL’s phase-comparator frequency iin Nf . 
This means that to achieve smaller frequency steps (higher 
resolution) from a single PLL, a larger prescaler iN , and/or 
smaller inf  are needed. This, necessarily results in a smaller 
phase-comparator frequency implying slowed frequency lock 
acquisition (agility) and increased spurious signals levels and 
tones closer to the carrier signal of outf  [3].  

DFS overcomes these problems as it allows for both large 
phase-comparator frequency at each constituent PLL and 
small frequency step resolution at the output of the 
synthesizer, e.g. equal to ( )21NNfin  in Fig. 1. 

Note that throughout this paper the prescalers ( iN ’s), of 
the PLLs are assumed to have a fixed size. Moreover, the 
greatest common divisor of every pair ( )ji NN ,  is 1. This is a 
requirement of DFS. We also partition the feedback divider 

km  into a sum of a fixed value km and a variable part which 

ranges from kN− to kN . So kkkkk NmNmm +− ,,: … .  

The following example clarifies the previous definitions. 
The general theory of DFS can be found in [5].  

B. Example of DFS in the Two PLL Case 
Consider the DFS architecture of Fig. 2 consisting of two 

PLLs whose output frequencies are summed resulting in outf  
given by (2) below. 

 

Figure 2.  A simple two-PLL DFS scheme (borrowed from [5] ). 
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Following the concepts of DFS [5], the prescalers 
are 31 =N  and 52 =N , both fixed and relatively prime. The 
feedback dividers 112 n+  and 216 n+  are such that 

33 1 ≤≤− n  and 55 2 ≤≤− n . So, the range of each PLL 
feedback divider is twice the size of the corresponding 
prescaler.  

Frequency  1f  can take any of seven values:  
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and in a similar manner 1f can be any of eleven values. 
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Table I (borrowed from [1]) shows the range of possible 
output frequencies outf  that can be generated using the DFS 
algorithm (to program the values of n1 and n2 within their 
specified ranges). They satisfy 

1553
21 ann =+

   (4) 

Specifically, we can synthesize all frequencies of the form, 

15
aff outout +=

   (5) 
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with the variable a taking the values -15,-14,-13,…, 14, 15, 
and the central frequency being 

inout ff
15
108=

. 

In contrast, the phase comparator frequencies of the 
individual PLLs are at least 9/3 fin or 11/5 fin with a 
synthesizer frequency resolution step size of 1/15. 

Taking this two PLL example generally, we can state that 
DFS develops, 
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where the variable part containing a can take any of the 
consecutive values –N1N2, … N1N2 . This leads by inspection 
of (6) to the fundamental property of DFS that the frequency 
resolution step can be much smaller than the phase comparator 
frequencies of each PLL.  

2121
,
N
f

N
f

NN
f ininin <<

    (7) 

The relation between n1, n2 and a is non-trivial and in 
same cases is not unique. However, it is proven in [5] that if 
we have the solution for a = 1, we can very easily generate 
solutions for every other value of a; therefore, very few 
numbers have to be stored. A detailed description of how to 
solve linear Diophantine equations efficiently is also available 
in [5]. 

C. Frequency Mixing - Notation 
Mixing of two signals at frequencies f1 and f2 is denoted 

as in Fig. 3, the outcome can be chosen to be either f1 + f2 or 
f1 – f2. The choice of the sum or the difference dictates only 
the central frequency of the phase comparator frequency and 
not the resolution or the range of the DFS synthesizer. Mixing 
of three or more signals has a similar interpretation. Note that 
the order of performing the mixing of the signals may be 
important for getting a spectrally pure output signal.  

1f

2f
21 ff ± + spurious products

1f

2f
21 ff ±

1f

2f
21 ff ± + spurious products

 

Figure 3.  Mixing diagram in the context of DFS 

Minimization of mixing spurs involves the choice of the 
central frequencies of the phase comparators and frequency 
ranges of the mixed signals, the choice of the sum or 
difference of their frequencies and of course the type of the 
mixer. The example that follows provide some indications 
regarding these choices, however, the goal of this section is 
only to lay out the principles of DFS required to understand 
the circuit topology of the demonstration synthesizer, 
discussed later. 

 

 

TABLE I.    FOUT SYNTHESIZED BY THE DFS OF FIG. 3 ( [1] ) 

 
 

III. DESIGN CONSIDERATIONS FOR HIGH SPECTRAL PURITY 
DFS DEMONSTRATION 

The DFS theory and solution strategy for high resolution 
synthesizers has been well developed and demonstrated.  
However simulation of spectral purity is difficult and so we 
pursued a practical demonstration circuit. Our design goal of 
high spectral purity with a spurious free dynamic range < -100 
dBc is a significant challenge to any synthesizer approach and 
our desire is to show that DFS presents no unique design 
related constraints. Rather its flexibility and that DFS can be 
implemented with simple well chosen devices and circuit 
topologies give an advantage to achieving this performance. 

Our selection for an appropriate DFS realization of very 
fine frequency resolution synthesizer with high spectral purity 
is motivated by very important applications in frequency 
alignment/translation circuits for synchronous distributed 
communication systems, maintenance of autonomous clock 
holdover and micro-phase steppers in laboratory timekeeping 
systems. In all of these applications, a local system frequency 
and/or phase must be generated and maintained to a very high 
degree of accuracy in reference to a global source, i.e. E1/T1 
in wireless cellular telephony or STM-1 in Synchronous 
Digital Hierarchy (SDH). Systems for equipment in these 

1094



applications also require good spectral purity as unwanted 
spurious and noise corrupt data and limit bandwidth 
utilization.  In frequency synthesizers for these systems, 
designers must carefully consider signal purity, resolution 
(accuracy to the global reference) and complexity against 
economic cost of the system. The introduction of DDS and 
fractional-N synthesis design techniques has been widely 
adopted for these systems as high frequency resolution 
(accuracy) and fast acquisition (settling time) can be achieved 
without the complexity of traditional multiple loop 
synthesizers. DDS and fractional-N architectures also promote 
the use micro-circuits and integration. 

However DDS and fractional-N both cause phase 
perturbations in their basic operation schemes leading to 
coherent spurious generation.  In the case of DDS, accuracy to 
a desired frequency is necessarily compromised by the 
incidence of truncation spurious attributable to the finite size 
of the DAC [3].  Our approach was to build a very high 
resolution, small frequency offset VHF synthesizer from DFS 
to allow very fine frequency adjustment of a fixed, input 
reference signal. DFS itself is not inherently phase perturbing 
like DDS or fractional N, so high spectral purity is a function 
of the k-order of the design topology and our choice for the 
solution for kmm …1  and a as described in the preceding 
sections. Most importantly, our demonstration synthesizer 
placed high attention in circuit design and our selection of 
critical devices; e.g. mixers, comparators and loop filters. We 
also emphasized the use of digital circuitry in the design to 
provide an easy path to possible small scale integration on-
chip. The attempt was to create the demonstration with simple, 
all digital elements and expedient construction techniques.  

A.  Frequency Mixing 
The key to low spurious production is the mixing method 

since DFS uses only periodic signals to generate its output and 
the mixer provides the only circuit element for non-linear 
signal production. Consequently, our first focus was placed on 
the mixing method as it determines the capability to meet our 
high spectral purity goals. We believed that if we got the 
mixing circuit design right, the balance of the circuitry would 
be less dominant.  

Referring to Fig. 2, the unwanted mixing products, 
spurious, related to the IF (f1 ± f2) output can be 
proportionally suppressed as, 

1
21

21 <<
+
−

ff
ff

      (8) 

For example, using an exclusive OR gate for mixing of 
digital signals with f1=1MHz and f2=1MHz+10kHz 
theoretically results in -80dBc or better spurious free dynamic 
range (SPFD) in the span 0 Hz to 20 kHz. Likewise for D-
Flip-Flop mixing of digital signals with f1=10MHz , 
f2=10MHz+1kHz, the SFDR also results in -80dBc or better 
in the span 0 Hz to 2 kHz. In this application of a VHF (~100 
MHz) DFS synthesizer, we could keep the phase comparator 
signals (IF) in the kHz region, thereby permitting compliance 
to our SPFD goal of < -100db for either digital mixing choice 

without having the phase comparator signals also be so close 
to make loop filtering difficult. 

B. Frequency Offsetting 
Fig. 4 is convenient synthesizer architecture for deriving 

the sum or difference between a large fin and a small offset 
frequency (f). For use in our DFS demonstration, the phase 
comparator frequency from a DFS determined PLL will be 
used for the offset frequency (f) with the reference source at 
fin; the reference source also drives the DFS PLL.    

inf

Phase
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Loop 
Filterf

ffin ±

filter
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Loop 
Filterf
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filter

 

Figure 4.  Diagram of offset synthesizer loop 

 We will use this approach to combine two DFS 
determined PLL to create a variable frequency synthesizer 
with a very small offset addition and subtraction (or net zero) 
from the fin reference. This structure can be cascaded k times 
to create any general k-order DFS PLL architectures. 

C. Nested DFS Architecture(freq. offset) 
As shown in Fig. 5, two DFS determined PLLs can be 

cascaded using the offset synthesizer structure to form a DFS 
architecture where the variable fout can be adjusted in very 
small resolution frequency steps from the fixed reference fin. 
Based on the DFS theorem 5.1 of [4], the PLL output 
frequencies of f1 and f2 can be determined by two mutually 
prime numbers N1,N2 and sectioned into fixed and variable 
parts where the variable part relates to the a of the 
Diophantine expression.  More specifically, the numerator of 
each PLL 1 or 2 is split into a central fixed frequency 
determined by the integer pN1 or pN2 in a manner described 
for the constant c from [5]. The variable part of the numerator 
m1 or m2 is then allowed to take any value in the range of –
N1,…,N1 and –N2,…,N2 respectively with the DFS advantage 
of allowing a to vary over the range –N1N2,…,N1N2.  Clearly 
under these conditions a setting of the variables exists where 
the net contribution to fout equals zero or fout = fin. 

The additional fixed dividers Q and R are placed in the 
architecture to further refine the frequency resolution of the 
DFS architecture.  The use of the dividers Q and R will slow 
the settling or transition time of the circuit but this parameter 
is not important to the scope of our demonstration synthesizer. 
As already noted, the same frequency resolution fin/QRN1N2 
could be achieved by cascading one or two more DFS 
determined PLLs for fin/N1…Nk, while recovering acquisition 
speed as each constituent PLL would settle at a time associate 
with a much smaller divider Nk.  

Fig. 6 shows the numerical DFS design solution for our 
demonstration synthesizer. The solution shows the desired IF 
relationship of f1 and f2 at ~1 kHz and the 100 MHz reference 
to permit -100 dBc SPFD.   
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Figure 5.  Diagram of two nested DFS determined PLL, k=2 
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Figure 6.  Numerical DFS solution for demonstration synthesizer 

As described in Fig. 5, R was made large compared to 
Q, N1 and N2 to achieve the desired frequency step 
resolution of ± 0.001 Hz thereby keeping the PLL phase 
comparator frequencies large and easy to filter.  This 
indicates our design emphasis on spectral purity over 
acquisition and our desire to achieve a practical circuit as 
simply as possible and not necessarily any fundamental 
constraint to the DFS method.   

IV. CIRCUIT TOPOLOGY AND RESULTS FROM DFS 
DEMONSTRATION SYNTHESIZER 

Fig. 7 illustrates the complete block architecture of our 
DFS demonstration synthesizer. The theory of operation 
based on the previous sections uses two DFS determined 
PLLs driving two offset synthesizer architectures.  The two 
VCXO’s are chosen to be nominally fin with each having a 
control range of nominally ± (N1f1)/fin or ±(N2f2)/fin or 

approximately ±10 kHz. The first offset synthesizer 
generates a positive offset (f1 + fin), the second offset 
subtracts an offset (f2 + fin) to yield fout.  DFS theory 
allows us to design the range of f1 and f2 to be practically 
similar to get zero offset or fin when they are equal and the 
full range of the synthesizer when both are at their maximal 
frequency values at either of their two polarity extremes.  
In this manner, the synthesizer generates very small offsets 
by adding the sum of the differences of f1 and f2 when they 
are close but not zero.  The use of DFS theory also assures 
that the frequency step size will be uniform with the full 
variable range. 

As stated previous, our desire was to build an expedient 
construction of the demonstration with the possibility of 
micro-circuit integration. This guided our choice for a 
substantial use of simple digital circuitry devices.  
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Figure 7.  Block architecture of DFS demonstration synthesizer 

For example, the frequency mixing is accomplished 
using an edge-triggered D-Flip-Flop technique. We have 
already discussed that this technique has the capability for a 
SFDR of -100 dBc at VHF fin (~100 MHz) by the ratio f1 / 
fin and f2 / (fin + (f1 – f2)) from Fig. 8. The two PFDs are 
standard charge-pump edge-triggered logic. 

A. Mixer results 
We chose the D flip-flop for mixing because of its 

simple, digital nature and requires no IF filtering. Although 
it is the least desirable of mixing methods for spurious 
level, its spurious performance is easily estimated by the 
ratio of IF/Fclk.  Since the reference tones needed for the 
DFS demonstration could be accomplished around the 1 
KHz region, we could still obtain an estimated worst case -
100 dB spur level with this less than desirable method. 

Another convenient property for the D flip-flop mixer is 
that the frequency offset of the two worst case (highest 
level) spurious ±S1 and ± S2 from the IF frequency can be 
determined within the range of 0 to 2×IF by the 
relationship,  
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SFclkIF
IF

Fclk

−=

+=<

=−








12

1  21

1

 otherwise

S then 0 if and

 *INT

   (9) 

When we set the measurement equivalent to the 
frequency scheme for the demonstration synthesizer of a 1 
KHz reference IF at a 100 MHz Fclk, we could not 
measure any spurious at their estimated locations above our 
system floor of -95 dBc in a resolution ~1 Hz BW. 

Consequently, we performed a test using a higher 
IF/Fclk ratio (10kHz/10MHz) to confirm the spurious 
model at a measurable level. Fig. 8 shows the two pair of 
dominant tones in the 2×I`F critical mixer performance 
bandwidth; ± 5734 and ± 4580. The frequency span of the 
measurement is 0 to 20 KHz, so the spurious shown 

represent the total number of spurs of interest over twice 
the reference tones of ~ 10 kHz. 

 

Figure 8.  Measured spurious performance of D flip-flop test 

The fact that the measured spurious in Fig. 8 was 6 dB 
better than the worst case estimation of -59 dBc at the 
frequencies located by the model provides confidence that 
our circuit implementation should meet the -100 dB goal.   

B. Spectral Purity Results of Demonstration Synthesizer 
The spectral purity measurement of a prototype of our  

DFS demonstration synthesizer is shown in Fig. 9.  The 
output signal was measured at the first offset loop 
comparison, f3 (fin + f1) of Fig. 7 with the reference tone 
set to f1 equal to ~ 9.6 kHz.  As measured, we show our 
synthesizer has a SPFD of better than -95 dBc over the 
frequency range of ± 25 kHz  

This measurement span is greater than two times the 
reference tone on either side of the carrier and so should 
catch any of the unwanted spurious resultant from leakage 
of the mixer products or infiltration of the comparator 
reference through loop filter 1 of Fig. 7. We believe this 
measurement is the first, substantiated proof that the DFS 
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technique does provide for high spectral purity in fine 
frequency synthesis. 

 

Figure 9.  Spectrum measurement of DFS synthesizer 

We note that throughout this paper, we describe a 100 
MHz VHF synthesizer, but the availability of ± 100 ppm 
VCXO’s made use of 155.52 MHz for our first prototype. 
This did not influence the design approach or topology 
other than scale the necessary DFS center frequencies 
which as we have made clear do not issue any significant 
restraint to the DFS technique. 

V. SUMMARY 
We continue to have great enthusiasm for the DFS 

method for synthesizer design. In summary, the general 
structure of DFS architectures provides the following 
desirable properties: 

An ability to achieve a pre-determined center frequency, 
fout; 
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with a total variable frequency range of 

inoutinout ffff +− to     (11) 

and a frequency step resolution of  

k

in

NNN
f
"21      (12) 

while maintaining the individual PLL comparator reference 
frequencies 
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The application of DFS permits high flexibility on the 
relationship of the fixed frequency reference to output 
frequency (10) with wide variable range (11). Because of 
(12), very fine step size can be created from no more than 
four PLLs. Since the individual Nk prescalers of each 
constituent PLL can be kept small agile (fast settling time) 
frequency adjustment is not driven by step size and 

therefore optimized independently. Phase noise would be 
determined by the fin reference with spurious products are 
well controlled and easily filtered. 

Our demonstration synthesized used the properties of 
DFS to optimize for the demanding requirements of high 
spectral purity and very small resolution steps.  Other 
synthesizer requirements could also be approached given 
the flexibility of the DFS technique, for example fast 
frequency transition over large range 
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