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Abstract— Diophantine Frequency Synthesis1 is a new approach
to fine-step and fast-hopping frequency synthesis that is based on
mathematical properties of integer numbers and Diophantine equa-
tions. Diophantine Frequency Synthesis overcomes the constraining
relationship between frequency step and phase-comparator fre-
quency inherent in conventional phase-locked loops. It leads to fine-
step, fast-hopping, modular-structured frequency synthesizers with
potentially very low spurs, especially near the carrier.

I. INTRODUCTION

Fine frequency synthesis2 is important in many applications
ranging from scientific instrumentation, atomic clocks, timing
systems and satellite navigation, to certain classes of commu-
nication and medical systems. Several fine frequency synthesis
architectures have been proposed [1]-[2].

Diophantine Frequency Synthesis1,3 (DFS) is a new approach
to fine-step frequency synthesis. It is based on mathematical
properties of integer numbers and Diophantine equations [3].

DFS uses two or more basic phase locked loops (PLL)s.
The PLLs are driven by the same reference signal and their
output frequencies are added (or subtracted) to give the output
frequency of the synthesizer. DFS provides the mathematical
algorithm for choosing the prescalers and for adjusting the
feedback dividers.

DFS results in fractional resolution4 of the synthesizer equal
to the product of the fractional resolutions of the individual
PLLs ( 10−10 is typical). Specifically, if N1, N2, . . . , Nk are
the prescalers of the PLLs and fin is their (common) input
reference frequency, the output frequency step of the synthesizer
is fin/(N1N2 · · ·Nk) and the output frequency range is 2fin.

DFS offers a significant advantage: it leads to PLL-based
architectures for which the output frequency step can be ex-
tremely small, while, at the same time, the prescalers are
small and the phase-comparator frequencies are high. This
allows for simultaneously having very high resolution and large
loop bandwidths, i.e. fast frequency hopping. In a sense, DFS
distributes the frequency resolution among the PLLs.

DFS offers the potential for very low spurs close to the
carrier, in contrast to other high resolution frequency synthesis
architectures like fractional-N synthesizers [2], that suffer from
spurious signals or significant noise close to the carrier due to
their inherent FM modulation, and the direct digital synthesis
that also has spurious signals close to the carrier [4] and whose
spectral purity is limited by the digital-to-analog converter.

1Patent Pending: Johns Hopkins Univ. Applied Physics Laboratory
2The terms “fine (frequency) step”, “high resolution” and “fine-

frequency synthesis” are used indistinguishably in this paper.
3More details can be found in [5].
4 Fractional Resolution , freq. step / center freq.
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Fig. 1. Basic PLL

II. NOTATION

DFS uses two or more basic PLLs like the one5 in Figure
1. Throughout the paper, the prescaler divider, N , is assumed
fixed. The feedback divider, n̂, is the sum n̂ = n̄ + n, of a
fixed value n̄, and, a variable n that can take both negative and
positive values within a predefined range. For all values of n, n̂
is positive. The output frequency of the PLL is fout = n̂

N
fin.

Since the paper focuses on the mathematical principles of
DFS, and not in the technical details of the individual PLLs,
Figure 2a is used for convenience instead of Figure 1.
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Fig. 2. (a) Simplified schematic of the basic PLL, (b) Mixer

The mixing of two signals at frequencies f1 and f2 is denoted
as in Figure 2b where the outcome can be either f1 + f2 or
f1 − f2; the context in the paper indicates whether the sum or
the difference is considered. Mixing of three or more signals
has a similar interpretation.

III. INHERENT LIMITATIONS OF PHASE LOCKED LOOPS

Frequency synthesis using a single PLL, like that in Figure 1,
implies frequency steps that are equal to the phase-comparator
frequency fin/N . This means that having small frequency steps
(by using large N and/or small fin) requires having low phase-
comparator frequency fin/N as well. The last one implies small
loop bandwidth [1], [2] and therefore slow frequency hopping,
and potentially increased spurious signals and noise.

DFS overcomes these constraints, allowing for both high
phase-comparator frequency and very small frequency step
simultaneously.

5“PC” may also be phase-frequency comparator or similar block.
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IV. DFS: A MOTIVATING EXAMPLE

Consider the simple architecture in Figure 3 consisting of two
PLLs whose output frequencies are summed giving
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Fig. 3. A simple DFS scheme

The prescalers are 3 and 5 (fixed). Let the feedback dividers,
12 + n1 and 16 + n2, be variable with

−3 ≤ n1 ≤ 3 and − 5 ≤ n2 ≤ 5

i.e. the range of each feedback divider is twice the size of the
corresponding prescaler6. Then, f1 can take any of the 7 values:

f1 ∈ � 9

3
fin,

10

3
fin,

11

3
fin, . . . ,

15

3
fin � (2)

and f2 can take any of the 11 values:

f2 ∈ � 11

5
fin,

12

5
fin,

13

5
fin, . . . ,

21

5
fin � (3)

Table I shows a set of output frequencies fout that can be
synthesized by appropriately setting n1 and n2 within their
specified ranges. Table I demonstrates three properties of the
simple DFS scheme in Figure 3 that also extend to the general
DFS architectures.

Property 1: The frequency step is constant and equals

frequency step =
fin

15
=

fin

3 · 5
(4)

The choice of prescalers results in much smaller frequency
step than those of the individual PLLs, i.e., fin/3 and fin/5.

Property 2: The output frequency range is 2fin. More accu-
rately, by defining fout = fout|n1=n2=0, we have

fout = fout − fin . . . fout + fin (5)

Property 3: If the mixer provided the frequency difference, i.e.
if fout = f1 − f2, properties 1 and 2 would still hold because
the ranges of n1 and n2 are symmetric with respect to 0.

Table I indicates that fout can be expressed in the form

fout = fout +
a

15
fin

where a takes the values −15,−14,−13, . . . , 14, 15, and the
central frequency is fout = 108

15
fin. In contrast, the output

frequencies of the individual PLLs are

f1 =
12

3
fin +

n1

3
fin and f2 =

16

5
fin +

n2

5
fin.

6This partially specifies the required frequency range of the VCOs.

fout = � n1
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+
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3
+
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fin

= � n1

3
+

n2

5 � + � 12

3
+ 16

5 �
-3 0 93 / 15 = -15 / 15 + 108 / 15
-1 -3 94 / 15 = -14 / 15 + 108 / 15
-2 -1 95 / 15 = -13 / 15 + 108 / 15
-3 1 96 / 15 = -12 / 15 + 108 / 15
-1 -2 97 / 15 = -11 / 15 + 108 / 15
-2 0 98 / 15 = -10 / 15 + 108 / 15
-3 2 99 / 15 = -9 / 15 + 108 / 15
-1 -1 100 / 15 = -8 / 15 + 108 / 15
-2 1 101 / 15 = -7 / 15 + 108 / 15
-3 3 102 / 15 = -6 / 15 + 108 / 15
-1 0 103 / 15 = -5 / 15 + 108 / 15
-2 2 104 / 15 = -4 / 15 + 108 / 15
-3 4 105 / 15 = -3 / 15 + 108 / 15
-1 1 106 / 15 = -2 / 15 + 108 / 15
-2 3 107 / 15 = -1 / 15 + 108 / 15
0 0 108 / 15 = 0 / 15 + 108 / 15

-1 2 109 / 15 = 1 / 15 + 108 / 15
-2 4 110 / 15 = 2 / 15 + 108 / 15
0 1 111 / 15 = 3 / 15 + 108 / 15

-1 3 112 / 15 = 4 / 15 + 108 / 15
1 0 113 / 15 = 5 / 15 + 108 / 15
0 2 114 / 15 = 6 / 15 + 108 / 15

-1 4 115 / 15 = 7 / 15 + 108 / 15
1 1 116 / 15 = 8 / 15 + 108 / 15
0 3 117 / 15 = 9 / 15 + 108 / 15
2 0 118 / 15 = 10 / 15 + 108 / 15
1 2 119 / 15 = 11 / 15 + 108 / 15
0 4 120 / 15 = 12 / 15 + 108 / 15
2 1 121 / 15 = 13 / 15 + 108 / 15
1 3 122 / 15 = 14 / 15 + 108 / 15
3 0 123 / 15 = 15 / 15 + 108 / 15

TABLE I
FREQUENCIES SYNTHESIZED BY THE DFS ARCHITECTURE OF

FIGURE 3

Table I shows how to chose the values of n1 and n2 resulting
in a specific value of a, i.e. how to solve the Diophantine
equation [5]

n1

3
+

n2

5
=

a

15

The relationship between n1, n2 and a is non-trivial and in
some cases it is not “unique”; for example both (n1, n2) =
(−2, 3) and (n1, n2) = (1,−2) result in a = −1.

Now let’s consider the simple architecture in Figure 3 but
with feedback dividers 6 and 15 instead of 3 and 5 respectively.
Now, n1 ranges from −6 to 6 and n2 ranges from −15 to 15.
In the line of the previous example one might expect that fout

would range from fout − fin to fout + fin with frequency step
fin/(6 · 15) = fin/90.

By calculating fout for all 13 × 31 allowed pairs (n1, n2)
we see that the output range fout − fin . . . fout + fin is indeed
achievable. However, the frequency step (resolution) is fin/30
and therefore three times larger that the “expected” fin/(6 ·15).
Note that7 lcm(6, 15) = 30.

Question: What are the special qualities of the pair of numbers
“3” and “5” leading to properties 1,2 and 3?

Answer: They are (pairwise) relatively prime integers, i.e.7
gcd(3, 5) = 1. This is not true for the pair (6, 15).

7lcm = least common multiple, gcd = greatest common divider
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Fig. 4. k-PLLs DFS scheme. Parameters n̄1 to n̄k are omitted.

The formal answer to the above question is given in Section
V. Note also that for both presecalers pairs (N1, N2), the
frequency step is fin/lcm(N1, N2).

The choice of the constants n̄1 and n̄2 (n̄1 = 12 and n̄2 = 16
in Figure 3) as well as the choice of + or − in the mixer defines
the central frequency fout and the frequency ratio f1/f2 in
the mixer. These choices can be used to minimize the spurious
signals generated by the mixer. Also, n̄1 and n̄2 along with N1

and N2 specify the required frequency ranges of the VCOs.

V. THE MATHEMATICAL PRINCIPLE OF DFS

DFS achieves arbitrarily small frequency steps while using
small prescalers, N1, N2, . . . , Nk, at the same time. The exam-
ple in the previous section is a special case of the general DFS
theory for k-PLL architectures, [5], like the one in Figure 4.

We concentrate first on the (normalized) variable part of the
output frequency of the k-PLLs DFS scheme in Figure 4.

Theorem 5.1: If N1, N2, . . . , Nk are pairwise relatively
prime8 positive integers, then for every integer a such that
−N1N2 · · ·Nk ≤ a ≤ N1N2 · · ·Nk the Diophantine equation
(6) has a solution (x1, x2, . . . , xk) with −Ni ≤ xi ≤ Ni for
all i = 1, 2, . . . , k.

x1

N1

+
x2

N2

+ . . . +
xk

Nk

=
a

N1N2 · · ·Nk

. (6)

The proof of the theorem can be found in [5]. Note that
Theorem 5.1 guarantees the existence of solution within the
specified bounds, |xi| ≤ Ni for all i’s, but not its uniqueness.

Interpretation of Theorem 5.1: Rephrasing Theorem 5.1 we
can say that given a set N1, N2, . . . , Nk of pairwise relatively
prime positive integers, all rational numbers from −1 to 1 with
uniform step (resolution) 1/(N1N2 · · ·Nk) are generated by
the sum x1/N1 + x2/N2 + . . . + xk/Nk when the numerators
x1, x2, . . . , xk vary within the intervals −Ni ≤ xi ≤ Ni,
i = 1, 2, . . . , k.

8i.e. gcd(Ni, Nj) = 1 for all i 6= j.

VI. FIXED FREQUENCY DFS: AN EXAMPLE

There are applications requiring the generation of a periodic
signal of a specific but fixed frequency fout using a reference
signal at a given frequency fin. Consider the example:

The input frequency is fin = 10MHz and the desirable
output frequency is fout = 9.285, 739, 4MHz which must be
synthesized with accuracy of 0.1Hz.

To achieve 0.1Hz resolution with only one PLL, a prescaler
equal to or greater than fin/0.1Hz = 108 is required. This
is definitely impractical for most realistic situations. Although
other techniques can be used to achieve this resolution [1]-[2],
the Diophantine approach is straight forward.

Let’s consider a DFS scheme with two basic PLLs and let
the prescalers of the two PLLs be the pair of relatively prime
integers N1 and N2. Moreover let’s assume for simplicity that
N1 u N2. From Section V we know that the output frequency
resolution of the synthesizer is fin/(N1N2). Since an accuracy
of 0.1Hz, or better, is required while having input frequency
of 10MHz, it must be that N1N2 ≥ 108. This implies that
N1, N2 u sqrt(108) = 10, 000, assuming that we want to
keep the prescalers minimal.

We can pick for example the pair of relatively prime integers
N1 = 10, 000 and N2 = 10, 003 with N1N2 = 100, 030, 000.
A DFS scheme based on these prescalers is shown in Figure 5.

10000

11
nn

inf outf

10003

22
nn

1
f

2
f

Fig. 5. Two PLLs DFS scheme

For now we ignore n̄1 and n̄2 (n̄1 = n̄2 = 0) and focus our
attention on tuning fout using n1 and n2. From section V we
know that by choosing appropriate values for n1 and n2 (and
ignoring n̄1 and n̄2), fout can take any value

fout =
n

100, 030, 000
fin (7)

where n ranges from −100, 030, 000 to 100, 030, 000.
Choosing n = 92, 885, 251 results in output frequency

fout = 9.285, 739, 378 . . . MHz. This is the best possible
approximation of the desirable frequency 9.285, 739, 4 MHz
by (7) and the frequency error is within the acceptable bounds.

To derive n1 and n2 corresponding to n = 92, 885, 251 we
must solve the Diophantine equation9

n1

10000
+

−n2

10003
=

n

100, 030, 000
. (8)

Since 92, 885, 251/100, 030, 000 is absolutely ≤ 1, Theorem
5.1 guarantees the existence of n1 and n2 such that −Ni ≤
ni ≤ Ni, i = 1, 2 that solve equation (8).

9Note that the minus sign is due to frequency mixing in Figure 5 and
it does not cause any complication since the ranges of n1 and n2 are
symmetric with respect to zero.

3109

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 18, 2008 at 14:51 from IEEE Xplore.  Restrictions apply.



Using the algorithms in [5] we get n1 = 8417, n2 = −869.
It it verified directly that�

8417

10000
+

−869

10003 � · 10MHz = 9.285, 739, 378 . . . MHz.

Now we concentrate on n̄1 and n̄2 and consider the complete
expression for fout, that is

fout =
�
n̄1

N1

−
n̄2

N2 � fin +
�
n1

N1

−
n2

N2 � fin.

In this example the second summand equals the desirable
frequency, therefore, we can set the first summand to zero. For
this to happen it must be n̄i = c Ni, i = 1, 2 where c is
an integer (a proof can be found in [5]). Moreover, c must be
positive, and sufficient large, so that the frequency multiplication
ratio of the PLLs i.e. (n̄i + ni)/Ni = c + ni/Ni, i = 1, 2,
remains always positive.

The value of c can be chosen to minimize the mixing spurs
[1], to minimize the phase noise introduced by the VCOs,
or to optimize the circuit otherwise. One choice could be
c = 5 which implies f1 u 58.417, 000, 0 MHz and f2 u

49.131, 260, 6 MHz.

VII. VARIABLE FREQUENCY DFS: AN EXAMPLE

Suppose we want to design a DFS synthesizer that can
generate frequencies from 2MHz to 4MHz with resolution
of about 1Hz. From the theory in Section V we know that
the general architecture of Figure 4, with input frequency fin,
can generate all frequencies from fout − fin to fout + fin

with resolution fin/(N1N2 · · ·Nk). Since the frequency range
is 2fin we can choose

fin = 1MHz. (9)

Then, the resolution requirement is satisfied if
fin

1Hz
= N1N2 · · ·Nk ≥ 106. (10)

Suppose we add the requirement that the phase-comparator
frequencies in all PLLs are about 10kHz. This means that

fin

Ni

u 10kHz , i = 1, 2, . . . , k. (11)

Relations (9) and (11) imply that Ni u 100, i = 1, 2, . . . , k.
Therefore, the minimum number of PLLs that satisfies (10) is
k = 3. Three convenient pairwise relatively prime numbers are
N1 = 100, N2 = 101 and N3 = 103.

The next step is to decide what the central frequencies of the
three PLLs should be and how they will be mixed i.e. added or
subtracted. Since the purpose of this paper is solely to present
the mathematical principles of DFS, many technical issues10

involved in these decisions are not discussed here.
A simple choice is f1 = 55MHz, f2 = 40MHz, and f3 =

18MHz (no effort has been made to optimize this choice) and
the output frequency is chosen to be fout = −(f1 − f2) + f3

resulting in fout = 3MHz. Since fi = (n̄i/Ni)fin, i = 1, 2, 3,
we have n̄1 = 5500, n̄2 = 4040 and n̄3 = 1854. The DFS
architecture is shown in Figure 6.

10like the pullability of the PLLs, the spurs generated by the mixing,
the possible filtering of the PLLs’ signals before mixing, the minimiza-
tion of the output phase noise etc.
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Fig. 6. 3-PLLs Variable Frequency DFS scheme

All frequencies are in MHz

Min Central Max Frequency step (resolution)
fin - 1 - -
f1 54 55 56 1 / 100
f2 39 40 41 1 / 101
f3 17 18 19 1 / 103
fout 2 3 4 1 / 1,040,300

TABLE II
FREQUENCY RANGES AND FREQUENCY STEPS (RESOLUTIONS) OF

THE SIGNALS IN THE DFS SCHEME OF FIGURE 6.

The frequency ranges of the PLLs and of the output signal,
along with their resolutions, are shown in Table II. The output
frequency can take all values

fout =
�
3 +

n

1, 040, 300 � MHz,

where n ranges from −1, 040, 300 to 1, 040, 300.
Given the desirable value of n, parameters n1, n2 and n3 can

be derived using the theory and algorithms in [5].

VIII. CONCLUSIONS

The Diophantine Frequency Synthesis (DFS) has been pre-
sented. It is based on number theory and Diophantine equations,
uses two or more basic PLLs and allows for independent
choices of the output frequency step (resolution) and the phase-
comparator frequencies of the PLLs. The Diophantine Fre-
quency Synthesis (DFS) leads to very small frequency steps,
fast frequency hopping architectures with potentially very low
output spurs, especially in the vicinity of the carrier.
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