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Abstract: Crossbar switching networks formed by nanowire
arrays and ohmic switches are promising future data storage
devices. This paper presents the information capacity limits of
these devices as well as simple encoding schemes that can be used
to store and recover the data. It is shown that for large array sizes
N, M, capacity asymptotically approaches (N+ M)log2(N+ M)
bits. The proposed encoding scheme allows for using N log92(M)
bits (N> M) using low complexity combinatorial circuitry.

1. INTRODUCTION

Recent advances in nanotechnology have enabled the development
of crossbar switching networks (CSNs) using nanowires [1]-[7].
The small size and high density of these structures makes them
favorable candidates for future high density interconnect, compu-
tation and information storage devices [1]-[22]. Here we consider
rectangular Nx M crossbar switching networks with ohmic (con-
tact) switches between every horizontal and every vertical wire as
shown in Figure 1. Every switch has two possible states, one of
high and one of low resistance (open and closed respectively). We
refer to this class of crossbar switching networks as R-CSNs to dis-
tinguish them from crossbar switching networks with semiconduc-
tive (diode) switches, D-CSNs, shown in Figure 2.

The exact information storage capacity of N xM R-CSNs is
derived. Simple approximate expressions are given as well. Addi-
tionally, it shown that for N -e - the capacity of square N x N R-

CSNs approaches 2Nlog2N bits and that for N, Me-* and

NIM -* a > 0, the capacity of N x M R-CSNs approaches
(N + M)log2 (N + M) This is in contrast to the capacity ofN x N

D-CSNs (Figure 2) which is N2 bits. Although D-CSNs are supe-
rior to R-CSNs in terms of capacity, R-CSNs are more prevalent
nano-structures currently and are expected to have significant
applications in the future [1]-[2].
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Figure 2: D-CSN and the extraction of its configuration.

2. PRELIMINARIES

Throughout the paper we consider rectangular N xM CSNs with
N horizontal and M vertical wires. The numbering of the wires is
as shown in Figure 1, i.e. similar to that of an N x M matrix. The

pair (i,j), with i = 1, 2, ..., N and j = 1, 2, ..., M, is used to

denote either the pair of the ith horizontal andjth vertical wires, or,
the corresponding switch between them. For pictorial simplifica-
tion in R-CSNs only, a black dot at the intersection (i,j) is used to

indicate that switch (i,j) is closed as shown in Figure 3.

We say that two wires (horizontal, vertical or both) are connected
if there is a path of closed switches between them, otherwise, they
are disconnected.

To estimate the information capacity of R-CSNs we make the fol-
lowing intuitive assumptions: 1) The switches have high open/
closed resistance ratio ropenlrclo,ed; 2) The resistance of the

wires is much smaller than the ropen of the switches; 3)The states

of the switches, closed or open, can be set independently. These
assumptions imply that by measuring the resistance between any
two wires we can accurately conclude whether they are connected
or not; the resistance measurement provides the correct binary
answer.

The way the switches of a CSN are setup (closed/open) is called a
configuration of the CSN. According to our assumptions, both
Nx M R-CSN and D-CSNhave 2NxM possible configurations.
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Figure 3: An R-CSN, a D-CSN having the same configuration
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Figure 1: NxM R-CSN
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Figure 4: Two distinguishable configurations of a 2 x 2 R-CSN

3. R-CSN vs. D-CSN; THE MAIN DIFFERENCE
Consider a D-CSN, like that in Figure 2, (i.e. with diode switches).
Let the N x M switches have a given, yet unrevealed to us, config-
uration. To extract the configuration we can perform a series of
N x M measurements; specifically: for i = 1, 2, ..., N and j
1, 2, ..., M we measure the current Ii j as in Figure 2. If Ii j is

non-negligible we conclude that the switch (i,j) is closed, other-

wise we conclude that the switch (i,j) is open. The main issue

here is that the N xM connections (not switches) are independent
in the sense that for every pair (i,j) current Ii j depends only on

the state of switch (i,j) This is in contrast to the case ofR-CSNs.
In Figure 4 for example the resistance between the 1st horizontal
and the 2nd vertical wires is low in both configurations; concluding
that the (1, 2) switch is closed in both cases is incorrect. There-
fore, in R-CSNs, the measured currents do not necessarily repre-

sent the states ofthe corresponding switches.

Although we cannot tell which of the switches are closed or open

in the left configuration of Figure 4, we can still distinguish it from
the right one (in Figure 4) by examining the whole set of

6 = (2 2 resistance measurements (i.e. for every pair of the

four wires). By doing so we infer that the pairs of connected wires
in the left configuration are (1, 1), (1, 2), (2, 1) and (2, 2)
while the pairs of connected wires in the right configuration are

(1, 2) and (2, 2). However, we cannot distinguish between the
two configurations of the switches in Figure 5. They result in the
same electrical behavior of the network, i.e. all wires are con-

nected together. The above examples and discussion are extended
directly to R-CSNs of any sizes N, M.

It is reasonable to assume that the R-CSN is connected to the rest
of the circuitry through its terminals and that the states of the
switches cannot be observed from outside or be extracted by any

other way, i.e. the switches are hidden inside the CSN.

An N x M R-CSN along with a given configuration of its switches

is called an (N + M) -terminal device. A device corresponds to the
whole set of information we can extract by measuring the resis-

tance between all pairs ofR-CSN's terminals (wires), i.e. (N2 At)

1 2

measurements. The device captures the electrical behavior of the
R-CSN, with a particular switches' confguration.

For example, it is easily verifiable that the 16 configurations (set-

ups of the switches) of a 2 x 2 R-CSN realize only 12 devices.

3.1 The Notion of Capacity for R-CSNs

Consider an N xM D-CSN like that in Figure 2. All 2NM config-
urations of the switches are distinguishable using the current mea-
surement tests. Every configuration corresponds in a one-to-one

fashion to a unique electrical behavior i.e. a device, and the 2NM

distinct electrical behaviors are 2NM possible states of the D-CSN.

Therefore, the information capacity of the Nx M D-CSN is

NM = log22NM bits. By extending this concept to R-CSNs, the

storage capacity of Nx M R-CSNs is B = log2D bits, where

D = D(N, M) is the number ofdevices N xM R-CSNs realize.

4. EXACT EXPRESSIONS FOR R-CSNs' CAPACITY

The following theorem provides an expression of the exact infor-
mation capacity of N xM R-CSNs. The expression involves the

Stirling numbers ofthe second kind S(n, m) [23], given by (1).

m

S(n,m) =
I E (-I)m-t M tn

t =O

(1)

Theorem 1: The information capacity of Nx M R-CSNs is

B = log2(D) bits where D is the number ofrealizable devices.

min{N, M}

D = L S(N+1,qO+l)S(M+1,q+l) q!
q = o

(2)

Figure 6 shows the graph of information capacity, B(N, M), for

N, M varying from 1 to 1024. The capacity is an increasing
function of both variables and symmetric, B(N, M) B(M, N).
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Figure 5: Two different but indistinguishable

configurations of a 2 x 2 R-CSN Figure 6: Information Capacity B(N, M) of Nx M R-CSNs
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Figure 7: Information Capacity of Nx M R-CSNs,
as a function of N, when N + M is fixed

Figure 7 shows the graph of the capacity B(N, M) when N+ M is
fixed. The capacity is maximized when N = M.

In the case of square, N x N, R-CSNs, expression (2) becomes

N

(3)
q =O

and the capacity B(N) is shown in Figure 8 along with its lower
and upper bounds Niog2(N) and 2Nog92 (N) respectively.

5. APPROXIMATE EXPRESSIONS FOR THE CAPACITY

The exact calculation of R-CSNs' capacity is not trivial for very
large sizes M and N; this motivates the derivation of low com-
plexity approximate expressions, one of which is:

B1(N,M) = (N+M- q).I0g2(q)+q.I0g2(e)
lN?+iM (4)

with q = +

Where, In is the natural logarithm and e = 2.7183.... The

approximation of B(N, M) by B1 (N, M) improves percentage-

wise as N, M -* - . The approximation is improved further if q is

replaced be the real solution of equation N+ M = q0og2(q)
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Figure 8: Exact expression and bounds for the capacity of
N xN R-CSNs, in comparison with the capacity ofD-CSNs

A simpler but less accurate approximation of B(N, M) for large
values of both N and M is given by (5).

B2(N, M) (N+ M) 0g2(92 ln(N+M)i (5)

For square N x N R-CSNs expressions (4) and (5) become

B1(N) = (2N- q) 0og2(q) + q /og2(e)

with q = 2N ln(2N)

and

B2(N) = 2N /092 4N

6. ASYMPTOTIC CAPACITY OF R-CSNs

The asymptotic behavior of B(N, M) and B(N) for large values

of N and M is given by the following two theorems.

Theorem 2: The capacity B(N, M) = log2D(N, M) ofNx M R-

CSNs has the property

lim B(N, M) 1 (6)
N,M-*oo (N+M).log2(N+M) 1(6
NIM a > O

Figure 9 shows the ratio of the capacity over the asymptotic
expression (N+ M) 0og2(N+ M) Due to the very large values

of N and M, the approximate formula B 1 (N, M) was used

instead of B(N, M) The error introduced is insignificant.
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Figure 9: The capacity ofNx M R-CSNs relative to

(N + M) 0og2(N + M) for very large values of N and M

Regarding the square N x N R-CSNs we have a similar result:

Theorem 3: The capacity B(N) = log2D(N) ofNxN R-CSNs

has the property

lim B (N) = 2
N ---> Nlog92(N)

(7)

Note that this result is stronger than saying 'B(N) is in the order
ofN log2N', which can be derived using complexity arguments.

D = I S(N+ 1, q + 1)2 q!.
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7. DATA ENCODING FOR R-CSNs
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Figure 10: A paradigm of encoding in a 4 x 8 R-CSN

For R-CSNs to be practically useful for information storage, cod-
ing of binary data into configurations of their switches is required;
and decoding to retrieve the information. Following the discussion
in Section 3. it becomes clear that using the whole capacity of R-
CSNs may result to very complicated coding schemes. To this end,
sacrificing part ofR-CSNs' capacity may allow for simpler coding.

Consider the case where N = 2n, M = 2m for some n, m Now
suppose that exactly one closed switch is allowed in every row
(horizontal wire). This results in MN choices. Using the standard
one-hot encoder and decoder, as illustrated in Figure 10, all MN
such configurations are distinguishable. So, using this encoding
scheme, one can store log2(MN) = m2n = N log2(M) bits of
information. More examples and discussion on encoding and
decoding schemes can be found in [2], [24]-[28].
8. CONCLUDING REMARKS

The information storage capacity of Nx M crossbar switching
network arrays with ohmic (contact) switches (R-CSNs) was
derived explicitly. The capacity is asymptotic to 2Nlog2(N) for
square N x N R-CSNs and asymptotic to (N + M) 9og2(N + M)
in general for large sizes N, M. A simple encoding scheme was
discussed to illustrate the trade-off between encoding complexity
and capacity usage.
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