
Diophantine Frequency Synthesis
A Number Theory Approach to

Fine Frequency Synthesis
Paul P. Sotiriadis

Department of Electrical and Computer Engineering
Johns Hopkins University, Baltimore, MD, U.S.A.

Email: pps@jhu.edu

Abstract- Diophantine Frequency Synthesis' is a new
approach to fine-step2, fast-hopping, low-spurs frequency
synthesis that is based on mathematical properties of integer
numbers and linear Diophantine equations. Diophantine
Frequency Synthesis overcomes the constraining relation
between frequency step and phase-comparator frequency
inherent in conventional phase-locked loops. It leads to fine-
step, fast-hopping, modular-structured frequency synthesiz-
ers with potentially very low spurs, especially in the vicinity
of the carrier.

I. INTRODUCTION

Fine-step frequency synthesis is important in many
applications including scientific instrumentation, atomic
clocks, timing systems, satellite navigation, certain
classes of communication systems and medical systems.
Several fine-step frequency synthesis architectures have
been proposed and a rich collection of them can be found
in [1] and [2].
The Diophantine Frequency Synthesis"'3 (DFS) is a

new approach to fine-step2 frequency synthesis that is
based on mathematical properties of integer numbers and
linear Diophantine equations. By definition, a Diophan-
tine equation is an algebraic equation whose solutions are
required to be integers, [3].
DFS uses two or more basic PLLs. The output fre-

quencies of the PLLs are added or subtracted to give
the output frequency of the synthesizer. DFS provides
the mathematical algorithm for choosing the sizes of the
prescalers and adjusting the sizes of the feedback dividers.
DFS has a significant advantage: it leads to PLL-based

architectures for which the output frequency step can be
made very small without using large prescalers or small
reference frequencies. This allows for simultaneously
having very small output frequency step and high phase-
comparator frequencies resulting in large loop bandwidths
and therefore fast frequency hopping. DFS distributes the
frequency resolution among the PLLs.

'Patent Pending: Johns Hopkins Univ. Applied Physics Laboratory
2 E.g. 10-10 step relative to carrier can be easily achieved.
3More details are available in the corresponding journal paper by the

same author [4]

II. PRELIMINARIES

DFS uses two or more basic phase locked loops (PLLs)
like the one in Figure 14.

Fig. 1. Basic PLL

Throughout the paper, the prescaler (divider N) is
assumed to have a fixed size, N. The size of the feedback
divider (n) is the sum n = n + n, of a fixed value n, and,
a variable n which can take both negative and positive
values within a predefined range. For all values of n, 12
is positive. The output frequency of the PLL is

I

fout = N fin,

This paper focuses on high-level architectures for fre-
quency synthesis and not in the technical details of the
individual PLLs, so Figure 2 is used for convenience in-
stead of Figure 1. It is agreed however that simplification
of the fraction n/N is not allowed i.e. n/N and kn/(kN)
correspond to two different PLLs.
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Fig. 2. Simplified schematic of the basic PLL

Note that frequency synthesis using a single PLL, as
that in Figure 1, implies frequency steps that are equal to
the phase-comparator frequency, i.e. equal to finIN.

4The Phase Comparator (PC) may also be a phase-frequency com-
parator or phase detector etc.
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Fig. 3. Mixer

This means that small frequency steps (using large
N and/or small fin) requires low phase-comparator fre-
quency finjN and therefore small loop bandwidth [1],
[2]. The last one implies slow frequency hopping and
possibly increased spurious signals close to fout. DFS
overcomes these problems as it allows for both high
phase-comparator frequency and very small frequency
step at the same time.
Mixing of two signals at frequencies fi and f2 is

denoted as in Figure 3 where the outcome can be either
fi + f2 or f -f2. The context in the paper always
indicates whether the sum or the difference is considered.
However, as shown in the following sections, the choice
of the sum or the difference dictates only the central
frequency of the output signal and not the resolution or
the range of the DFS synthesizer.

Mixing of three or more signals has a similar inter-
pretation. Note, however, that the order of performing
the mixing of the signals may be important for getting a
clean output signal.

Note that minimization of mixing spurs involves the
choice of the central frequencies and frequency ranges of
the mixed signals, the choice of the sum or difference of
their frequencies and of course the type of the mixer. The
examples that follow provide some indications regarding
these choices, however, the goal of this paper is only to
lay out the principles of DFS.

III. DFS: A MOTIVATING EXAMPLE

DFS uses mathematical properties of integer num-
bers to achieve very fine frequency step without using
large frequency dividers. Specifically, it combines the
outputs of two or more PLLs with (small) prescalers,
N1, N2,..., Nk, to achieve output frequency resolution
equal to fin/(N1N2 ... Nk) and output frequency range
2fin. Small prescalers imply high phase-comparator fre-
quencies, fi/NNi, and fast frequency hopping.

Consider the simple architecture of Figure 4 consisting
of two PLLs whose output frequencies are summed giving

fout =( ni + +12 + 1)f (1)

The prescalers are 3 and 5 (fixed). Let the feedback
dividers, 12 + n, and 16 + n2, be variable and such that

-3<n2 <3 and -5<n2<5

tin~ ~2nX f, , tu

fn 16 + n L' + fu
5

Fig. 4. A simple DFS scheme

i.e. the range of each feedback divider is twice the size
of the corresponding prescaler5. Then, fi can take any

of the 7 values:

(2)fj C { fin: 3fin: 3fin:... 3fin}

and f2 can take any of the 11 values:

f2 C { 5 fin : fin fin *... finf2 1 13 21 (3)

Table I shows a set of output frequencies f0 t that
can be synthesized by appropriately choosing n1 and
n2 within their specified ranges. Specifically, we can
synthesize all frequencies of the form

fout = fout + a fin15
with a taking the values -15,_14, -13,... ,14,15, and
the central frequency being fout 108 fin. In contrast,
the output frequencies of the individual PLLs are

fi fin + fin

and
f2 5 fin + 5 fin,

Table I shows how to find a solution (n12, n2) of the
Diophantine equation

n3 n2 a

3 5 15
within the set {-3, 2,...,3} x { -5, 4,... ,5}, for
every value of a in {-15, -14,... , 15}.
The relation between nl, n2 and a is non-trivial and

in same cases it is not unique. However, it can be shown,
[4] that if we have the solution for a = 1, we can
very easily generate solutions for every other value of a;
therefore, very few numbers have to be stored. A detailed
description of how to solve linear Diophantine equations
efficiently is available in [4].
Now let's consider the simple architecture in Figure 4

but with feedback dividers 6 and 15 instead of 3 and 5
respectively. Now, n1 ranges from -6 to 6 and n2 ranges
from -15 to 15.

5This specifies the required pull-ability range of the VCOs.
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n11 1n2 f (ni + n2 + 12 + 16

-3 0 93/15 -15/15 + 108/15
-1 -3 94/15 -14/15 + 108/15
-2 -1 95/15 -13/15 + 108/15
-3 1 96/15 -12/15 + 108/15
-1 -2 97/15 -11/15 + 108/15
-2 0 98/15 -10/15 + 108/15
-3 2 99/15 -9/15 + 108/15
-1 -1 100/15 -8/15 + 108/15
-2 1 101/15 -7/15 + 108/15
-3 3 102/15 -6/15 + 108/15
-1 0 103/15 -5/15 + 108/15
-2 2 104/15 -4/15 + 108/15
-3 4 105/15 -3/15 + 108/15
-1 1 106/15 -2/15 + 108/15
-2 3 107/15 -1/15 + 108/15
0 0 108/15 0/15 + 108/15
-1 2 109/15 1/15 + 108/15
-2 4 110/15 2/15 + 108/15
0 1 111/15 3/15 + 108/15
-1 3 112/15 4/15 + 108/15
1 0 113/15 5/15 + 108/15
0 2 114/15 6/15 + 108/15
-1 4 115/15 7/15 + 108/15
1 1 116/15 8/15 + 108/15
0 3 117/15 9/15 + 108/15
2 0 118/15 10/15 + 108/15
1 2 119/15 11/15 + 108/15
0 4 120/15 12/15 + 108/15
2 1 121/15 13/15 + 108/15
1 3 122/15 14/15 + 108/15
3 0 123/15 15/15 + 108/15

TABLE I
FREQUENCIES SYNTHESIZED BY THE DFS ARCHITECTURE OF

FIGURE 4

In the line of the previous example one might expect
that f0ut would range from fot -fin to fo.t + fin and
the frequency step would be fin/(6 15) = fin/90. By
calculating the output frequencies corresponding to all
allowed pairs (nl, n2) we see that the expected output
range is indeed achievable, however, the frequency step
(resolution) is fin/30 and therefore three times larger that
the "expected" fin/(6. 15). Note that6 lcm(6, 15) = 30.

Question: What are the special qualities of the pair of
numbers "3" and "5" leading to properties 1,2 and 3?

Answer: They are pairwise relatively prime integers, i.e. 7
gcd(3, 5) = 1. This is not true for the pair (6, 15).
The formal answer to the above question is given in

Section IV. Note also that for both presecalers pairs
(N1, N2), the frequency step is fin/lcm(Ni, N2).
The choice of the constants n/1 and n12 (n1 = 12 and

n2 = 16 in Figure 4) as well as the choice of + or

61cm = least common multiple
7gcd = greatest common divider

tin fout

Fig. 5. k-PLLs DFS scheme. Parameters 12 to nk are omitted.

- in the mixer define the central frequency fout and
the frequency ratio filf2 in the mixer. Therefore, these
choices can be used to minimize the spurious signals
generated by the mixer. Moreover, n12 and n12 along with
N1 and N2 specify the required tuning ranges (pullability)
of the VCOs.

IV. THE MATHEMATICAL FRAMEWORK OF
DIOPHANTINE FREQUENCY SYNTHESIS

DFS achieves very small frequency steps while using
small prescalers, N1, N2, . . . , Nk, at the same time. The
example in the previous section is a special case of the
general DFS theory for k-PLL architectures, like the one
in Figure 5.
The mathematical principle of DFS is given by Theo-

rem 4.1 below. First we concentrate on the variable part
of the output frequency expression for k PLLs

£1 +2 Xk + a

N1 N2 Nk Nl N2 ..Nk (4)

Theorem 4.1: If N1, N2,. .. , Nk are pairwise rela-
tively prime positive integers, then for every integer
a such that -N1N2 ... Nk < a < N1N2 ... Nk the
Diophantine equation (4) has a solution (X1, X2, k,)
where -Ni < xi < Ni for all i = 1, 2,..., k.

The proof with all the details can be found in [4].
Note that Theorem 4.1 guarantees only the existence

of a solution within the specified bounds, |xil < Ni for
all i's, but not the uniqueness of it. In Table I for example
we see that the equation n12/3 + n2/5 =-1/15 has (at
least) two solutions: -2/3 + 3/5 = 1/3 - 2/5 = -1/15.

Also, Theorem 4.1 guarantees the existence of a
solution within the specified bounds when a <
N1N2 ... Nk, but it does not say that a solution within
those bounds cannot be found for values of a that are
absolutely larger than N1N2 ... Nk.
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Interpretation of Theorem 4.1: Rephrasing Theorem
4.1 we can say that given a set N1,N2, . . .,Nk of
pairwise relatively prime positive integers, all rational
numbers from -1 to 1 with uniform step (resolution)
lI(N1N2 ... Nk) are generated by the sum xIjN, +
X2jN2 +... +Xk INk when the numerators X 1, X2, ... ,X
vary within the intervals -Ni < xi < Ni, i = 1, 2, ..., k.

V. FIXED FREQUENCY DFS
AN EXAMPLE

There are applications requiring the generation of a
periodic signal of a specific but fixed frequency fo0t using
a reference signal at a given frequency fin. This is typical
in atomic clocks and related time reference systems. Lets
consider the following example:

The input frequency is fin= 1OMHz and the desired
output frequency is fo0t 9.285, 739,4MHz which
must be synthesized with accuracy of O.lHz.

To achieve O.lHz resolution with only one PLL, a
prescaler equal to or greater than fir,j0.lHz = 108 is
required. This is definitely impractical for most realistic
situations. Although other techniques can be used to
achieve this resolution [1]-[2], the Diophantine approach
is straight forward. Two scenarios are presented using
combinations of two and three basic PLLs respectively.

A. Two PLLs DFS scheme
Let the prescalers of the two PLLs be the pair of

relatively prime integers N1 and N2. Moreover lets as-
sume for simplicity that N1 N2. From Section IV
we know that the output frequency resolution of the
synthesizer is fi,j1(N1N2). Since an accuracy of O.lHz,
or better, is required while having input frequency of
1OMHz, it must be that N1N2 > 108. This implies that
Nl, N2 _ sqrt(108) 10,000, assuming that we want
to keep the prescalers as small as possible.
We can pick for example the pair of relatively prime

integers N 10, 000 and N2 = 10, 003 with NN2 =

100, 030, 000. Then the phase-comparator frequencies of
the PLLs are about lkHz. A DFS scheme based on these
prescalers is shown in Figure 6.

From section IV we know that by choosing appropriate
values for n1 and n2 (and ignoring n12 and n12), f0ut can
take any value

fout 100,030, 000 fin (5)

where n ranges from -100, 030, 000 to 100, 030, 000.
Choosing n = 92,885,251 results in output fre-

quency f0ut = 9.285,739,378 ... MHz. This is the
best possible approximation to the desired frequency
9.285, 739,4MHz by (5). The frequency error is within
the acceptable limits.
Now we derive n1 and n2 corresponding to the partic-

ular value of n. To do so we must solve the Diophantine
equation

n100 -n2 1 n

10000 +10003 100,30,000 (6)

Note that the minus sign (due to frequency mixing in
the scheme of Figure 6) does not cause any complication
since the ranges of n1 and n2 are symmetric with respect
to zero. We simple solve (6) for n1 and (-n2).

To proceed we use the "gcd" function of MATLAB8.
It gives "gcd(10003, 10000) = [1, -3333, 3334]" and so

-3333 3334
+10000 10003

1
100, 03,O00

Following the algorithm in [4] we set

Yi = (-3333 1n) mod 10000
= 8417

Y2 = (3334 1n) mod 10003
= 869

Since

I
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Fig. 7. Three PLLs DFS scheme

f2 49.131,260,6 MHz and therefore a ratio f2lfl
close to 0.85 resulting in relatively low mixing spurs [1].

Three PLLs DFS scheme
Use of three PLLs allows for more flexibility. Lets

assume again that N1 N2 _ N3. If Ni _ W108 464
the we get N1N2N3 108. An appropriate triplet of
pairwise relatively prime integers is N1 = 512, N2 = 495
and N3 = 397 giving N1N2N3 = 100,615,680.
A DFS scheme using these numbers is shown in Figure

7. Lets ignore the constants n1, n2 and 123 for the moment
(consider n1 = n2 = n3 = 0 for now). Then, by adjusting
nl, n2 and n3 the output frequency can take any of the
values

fou n fi (7)f0t10O15~680f(7
where n ranges from -100,615,680 to 100,615,680.
The best approximation of the desired frequency,
9.285,739,4MHz, with fin = 1OMHz, is achieved
using n = 93,429,098. Now we have to solve (8) for
nl, n2 and n3. The minus sign in n3 is due to frequency
mixing in the scheme of Figure 7.

ni+ n2+-n3
512 495 397

93,429,098
100,615,680

Using the algorithm in [4] we conclude that n, =-114,
n2 = 217 and n3 =-283.

Putting n12, n12 and n13 back into the equation we have

fout
(n1 + n2 2n3fin + 193,429,098 in
N1 N2 N3JJn 100615,68

As in the previous example, we can choose the values
of nl, n2 and n3 to minimize mixing spurs or noise,
or bring fl, f2 and f3 within the operating range of
existing PLLs, or optimize some other criterion. However,
we would like to do so without changing f0ut since it
already has the desirable value. Therefore

+ 0 (9)
N1 N2 N3

Since N1, N2 and N3 are pairwise relatively prime,
equation (9) implies that9 n1i c1N1, n2 c2N2 and
n3 = c3N3 with C1 + C2 -c3 0.
An eligible choice, for example is cl 3, c2 = 1

and c3 = 4. This gives fi = 27.773,437,50, f2
14.383, 838, 38 and f3 = 47.128,463,48.

VI. VARIABLE FREQUENCY DFS
AN EXAMPLE

Suppose we want to design a DFS synthesizer that can
generate frequencies from 2MHz to 4MHz with reso-
lution of about lHz. From the theory in Section IV we
know that the general architecture of Figure 5, with input
frequency fin, can generate all frequencies from f ut-
fin to fout + fin with resolution finj(NlN2 ... Nk).
Since the frequency range is 2fin we can choose

fin = lMHz. (10)

Then, the resolution requirement is satisfied if

N1N2 ... Nk > 106. (1 1)

Suppose we add the requirement that the phase-
comparator frequencies in all PLLs are about lOkHz.
This means that

fin - (12)

Relations (10) and (12) imply that N1 _ N2 -
N3 100. Therefore, the minimum number of PLLs,
k, that satisfies (11) is k = 3. Three convenient pairwise
relatively prime numbers are N1 = 100, N2 = 101 and
N3 = 103.
The next step is to decide what the central frequencies

of the three PLLs should be and how they will be mixed
i.e. added or subtracted. Since the purpose of this paper
is solely to present the mathematical principles of DFS,
many technical issuesl0 involved in these decisions are
not discussed here.
A simple choice is"1 fi = 55MHz, f2 = 40MHz,

and f3 18MHz and the output frequency is chosen to
be fout -(f- f2) + f3 resulting to fout = 3MHz.
Since fi (n12ijNi)fin, i = 1, 2, 3, we have n1 = 5500,
n2 = 4040 and n13 = 1854. The corresponding DFS
architecture is shown in Figure 8.
The frequency ranges of the PLLs and of the output

signal, along with their resolutions, are shown in Table
II. The output frequency can take all values

9The proof is available in Ref. [4].
1Olike the pullability of the PLLs, the spurs generated by the mixing,

the possible filtering of the PLLs' signals before mixing, the minimiza-
tion of the output phase noise etc.
"No effort has been made to optimize this choice. Using more

elaborate mixing schemes one can possibly reduce fi, f2 and f3 while
maintaining a clean output spectrum.
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Fig. 8. 3-PLLs Variable Frequency DFS scheme

All frequencies are in MHz
Min Central Max Frequency step (resolution)

fin - 1
fi 54 55 56 1/ 100
f2 39 40 41 1/ 101
f3 17 18 19 1/ 103
f0ut 2 3 4 1/ 1,040,300

TABLE II
FREQUENCY RANGES AND FREQUENCY STEPS (RESOLUTIONS) OF

THE SIGNALS IN THE DFS SCHEME OF FIGURE 8.

fott (2± 1 040, 300)
where n ranges from -1, 040, 300 to 1, 040, 300.

Given the desirable value of n, parameters nl, n2 and
n3 can be derived using the theory and algorithms in [4].

VII. CONCLUSIONS

The Diophantine Frequency Synthesis (DFS) approach
for fine frequency synthesis has been presented.

It is based on number theory and Diophantine equa-
tions, uses two or more basic PLLs and allows for inde-
pendent choices for the output frequency step (resolution)
and the phase-comparator frequencies of the PLLs.
The Diophantine Frequency Synthesis (DFS) leads

to very small frequency steps, fast frequency hopping
architectures with potentially very low spurs, especially
in the vicinity of the carrier.
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