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Abstract- A Gm- C architecture for a quadrature, sinusoidal os- ± Vref
cillator with instantaneous, phase-preserving, linear frequency control Peak detector
and independent, static amplitude control is presented. The architecture L C R' -R<>
is analyzed and closed-form expressions are given for both frequency
and amplitude. An implementation of the architecture using general
purpose discrete bipolar transistors has been tested. Simulation results
and measurements are demonstrated and compared to theory. The wide
frequency range of tunability and the low total harmonic distortion Fig. 1. Amplitude control through comparison of oscillation's amplitude
observed, as well as the inherent phase preservation make the architecture with a reference value
appropriate for use in analog communication schemes.

I. INTRODUCTION
Modulation schemes in various communications protocols demand controls are completely decoupled and non-interfering. Moreover, the

oscillators featuring a wide range of frequency tuning, fast frequency frequency control is instantaneous, wide range and phase-preserving,
control and low THD (Total Harmonic Distortion). Literature in this making the architecture candidate for use in frequency modulation
field is vast and several designs focusing on some or all of the above schemes such as continuous-phase FSK (Frequency Shift Keying).
properties have been proposed. Due to amplitude control, THD is also kept at low values. Extensive

Frequency control can be achieved by varying the bias voltage at a simulation results and measurements were conducted and found to
varactor in an LC-oscillator. However, LC-VCOs (Voltage Controlled be in good agreement with theory, demonstrating the validity of the
Oscillators) usually do not offer tuning ranges greater than 1 octave architecture.
and, therefore, the trend has shifted to current-mode implementations. II. THEORETICAL ANALYSIS
Topologies based on CCCIIs (Current Controlled Current Conveyors)
([1] - [4]), OTA-C blocks ([5] - [7]), current-mirror low-pass filters An ideal (i.e. lossless) second order Gm- C quadrature oscillator
([8], [9]) and translinear circuits ([10] - [12]) are the ones most (Fig. 2) can be represented in the state space domain as
commonly encountered. The oscillation frequency is usually linearly VG (t) - GC(t) v2(t) (
controlled by a bias current. (t) - (t) V (t)

Although frequency tunability is an attribute existing in most 2(t) c l(t)
current-mode oscillator designs, amplitude control is usually not where the state variables of the system, VI (t) and V2(t), are the
present and the amplitude of oscillation is limited by the components' voltages on the capacitors. Consider the transformation of the state
non-linearities. This leads to high harmonic distortion. Amplitude variables into polar coordinates
control is needed so that the devices operate in their linear region

VI (t) V(t) cos(t)
and the harmonic distortion of the output signal is kept low. V2(t) IV(t)|| s(O(t)) (2)
A few approaches have been presented for amplitude control that V2(t) V(t) sin(0(t))

prohibit saturation of signals. The most commonly used method is to 2 i

subtract the amplitude of oscillation, calculated by a peak detector, where
( V(t)) Vi(t) + V2(t) is the norm and 0(t)

from a reference signal, integrate the difference and provide this z (V1(t),V2(t)) is the phase of vector V(t) [V1(t) V2(t)IT. The
signal as control to a negative resistance as shown in Fig. 1 (e.g. [7] solution of (1) can then be written as
[13], [14]). However, dynamic feedback for the amplitude control IV(t)I =Ao and w(t) 0(t) = G -(t) (3)
can result in instabilities ([15], [16]). Instabilities are interpreted as C

fluctuations of the amplitude of oscillation; the magnitude of these where Ao is a constant and depends on the initial conditions V1(0)
fluctuations is dependent on the initial conditions of the feedback and V2(0), and w(t) is the angular frequency of vector V(t), i.e. the
system. A remedy to this problem has been proposed in [15] frequency of oscillation.
where the feedback system controls both the quality factor, Q, and
the amplitude of oscillation. Nonetheless, the range of frequency
tunability remains small.

The proposed architecture in this work is based on a translinear v1 V2
approach and handles amplitude control using a static (non-dynamic)
feedback, in this way avoiding any steady-state amplitude fluctua- c I-o C
tions. Static feedback has been also proposed in [17], where, a similar
architecture based on operational amplifiers and multipliers had beenFi.2AsmpeecnorrGm-Csilar
presented. The feedback is such that the amplitude and frequency
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According to solution (3), system (1) features the desirable prop- . When the amplitude of oscillation reaches a desired value Aref
erty of instantaneous angular frequency (w(t)) control by adjusting then k(Aref) = 0
transconductance Gm (t). However, the norm of V(t), i.e. the ampli- . At lIV(t)II = Aref the derivative of k( lV(t) I) with respect
tude of oscillation, remains constant and uncontrollable in time. to IV(t) should be strictly negative

The purpose of the proposed architecture is to appropriately . Function k(I V(t) I) needs to be a monotonic decreasing func-
alter system (1) so as to introduce static amplitude control while, tion of JIV(t)II
simultaneously, maintaining the property of instantaneous frequency . k( IV(t) = 0) > 0 so that the oscillation self-starts
control. The modification is done in such a way so that the two In the proposed architecture, k( IV(t)II) was chosen as
controls remain decoupled. In this Section the mathematical approach k(IV(t) ) G(A 2 V(t) 2) (12)
is analyzed while in Section III a circuit implementation is presented. ref

To control the amplitude of oscillation while preserving the instan- where G is a gain factor.
taneous frequency control, system (1) is modified as Solving differential equation (8) using (12) yields

VI(t) c(t) V2(t) + K(V(t))V (t) (4)IV(t) Aref (13)

V2(t) = -t) V/I(t) + K(V(t))V2(t) -Ar_ 2) -2GA2 t
Using matrix notation, system (4) can be written as /NO) /

[ GO(t) -G,(t) From solution (13), two points can be concluded. First, the amplitude
V(t) LG,z,,(t) Co V(t) +K(V(t))V(t) (5) of oscillation willindeedconverge to Ar,f,since limt, IV(t) I=

c Aref; second, in a neighborhood of Aref V (t) converges expo-
where K(.) is a scalar function appropriately chosen to drive and nentially fast to Aref.
maintain the amplitude of oscillation to a desired value (discussed 1. CIRCUIT ANALYSIS AND IMPLEMENTATION
later). Left multiplication of (5) by VT (t) yields

The block diagram representation of the proposed architecture is
VT(t)V(t) = K(V(t))VT(t)V(t) (6) shown in Fig. 3. The core of the oscillator (blocks FREQ and the

Taking into account that VT (t)V(t) VT(t)V(t) and that two capacitors) remains the same as that of Fig. 2. Transconductances
VT(t)V(t) = IIV(t)112, (6) takes the form GmFREQ, and therefore the frequency of oscillation, are controlled

by current Ifreq. An additional feedback loop, composed of blocks
I d (IV(t)1 2) K(V(t)) IIV(t)1 2 SoS ("Sum of Squares"), FBI and FB2, has been added to control
2 dt d (7) the amplitude of oscillation. This feedback loop represents the

-dt (IV(t) I) = K(V(t)) V(t) K(V(t))V(t) term of equation (5). The SoS block operates in
current-mode and outputs a current proportional to the sum of squares

Choosing K(.) to be a function of ||V(t)II only, K(V(t)) of voltages V1 and V2. IB is the biasing current of the block and
k( IV(t)II ) (7) reduces to B is a constant determined by the implementation of the circuit.

d V(t -k V(t V(t 8
Current 'square = IBB(B-1- IIV(t)112) has a form similar to (12)

dt (t) ) k ( V(t) ) V(t) (8) which we would like to implement. However, B-1 is a constant and
which implies that the way the norm of V(t) evolves in time, is therefore cannot be varied. To achieve controllability of the amplitude
independent of its phase. of oscillation, a second term needs to be added and this is done

Multiplying (5) by VT(t) [ 0 -1 ] from the left, we get through FB2 blocks and current Iref.
The circuit implementation of transconductors GmFREQ is shown

VT(t) [0 1] V(t) - Gm(t) IIV(t)112 (9) in Fig. 4(a). The differential input Vin+ - Vi, is converted to a

1 0 C differential current ±1.i ±i , through a Caprio quad [18] formed

Using transformation (2), it can be also proved that by transistors Ql - Q4 and resistor R. The differential current ±Ihi
is scaled by 'freq/'o from the network composed of QxI - Qx4 and

VT(t) 1 V(t) I- IV(t) 12-0(t) (10) Qyl - Qy4 and then output in a single-ended form. The total gain
1 0 dt of the transconductor is

Combining (9) and (10) we get Gm4if)req
Gm~~~~~~~~~~~GFE =t 4IR (4

0t= (t) = ( (I11)
Considering the steady-state case, Gm(t) and, therefore, w(t) are

constant, and IV(t) has reached a value determined by k( VIV(t) I). isquare square SOS isquare
In this case, V(t), as well as its two quadrature components Vi (t) IB - IBB(V,2+V22)
and V2 (t), are oscillating with frequency w(t) and amplitude IIV(t) I. FIfreq IB
Equation (l1) dictates that any changes of Gm (t) affect only the GmF Ifreq mFBI

frequency, while (8) that any modification of k(||V(t) I) will have IFBVI + FREQ V2 IFBV
impact only on the amplitude of oscillation.. 2r -- Cq -- Ie /

The instantaneous value of the frequency of oscillation w(t) can T . GFE cT G -
be directly calculated from (11). The instantaneous value of the IB1 RQ+1mB
amplitude of oscillation, as well as how fast it converges to a desiredFBF2
reference value Aref, depends on the choice of k(.). k(.) can be any Fig. 3. Block diagram of the architecture
function of lV(t)l that satisfies the following properties [7]
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VCC Closed-form expressions can be derived for the calculation of the
QT frequency as well as the amplitude of oscillation. According to (11),VCC the frequency of oscillation will beIfreq

QF control VCC GmFREQ -I'freq
Q VV9 Q Q V2. Qx2 current QB 2fC 2I= ERC (17)

tXv. I Vii yQ Vi2 Frequency is linearly and instantaneously controlled by current Ifreq.
Vi.+ Q. QY3 QyQX 4 Vt-o From Fig. 3, it can be readily deduced that the current fed back

lo-lxi I eq/2+Iy -0V Qyc Qyd to the capacitors from transconductors GmFBI and GmFB2 iS<1 freq y 0

output IFBVi = (GmFB1 - GmFB2) Vi, i = 1, 2 (18)

(Ifreq/2-lyi - Combining equations (15), (16) and (18), the feedback current to
IDX ID (a) t capacitors C will take the form

NVEE (b) FBVi -/', (I 2-~ -B 21,2R2) ½, i =1, 2 (19)

When the desired amplitude of oscillation Aref is reached, VI =

_VEE Aref and IFBVi = 0. Substituting in (19), we are able to find a

Fig. 4. Circuit implementation of (a) GmFREQ and (b) GmFBI1 and closed-form expression for the amplitude of oscillation at steady-state
GmFB2 transconductors

A
2I

Aref 210IRV 1 - 2I ef (20)

Two limitations are imposed on the values that 'ref can have.
and therefore adjustable through If req. A cascode implementation of First, from (20), 'ref has to be less than half of IB. Second, I%i
the output stage was chosen so as to provide high output impedance. cannot be larger than 1, which limits the maximum amplitude to

In order to reduce circuit complexity and because the input stage max{Aref } = 1,R. This implies that 'ref has to be larger than
of all transconductors is connected to either V1 or V2, only the 0.25IB. Combining the two constraints we get that
output stage of transconductors GmFBI and GmFB2 is implemented
(Fig. 4(b)). Nodes Vil -V4 are attached to the corresponding 0.25IB <'ref < 0.5IB (21)
nodes on transconductors GmFREQ. The control (tail) currents (Fig. It should be noted that practical limitations due to the physics
4(b)) of transconductors GmFB1 and GmFB2 are Isquare and 2lref and dynamics of bipolar transistors must be also considered for
respectively. Therefore, their gains will be both the amplitude and frequency of oscillation. At high frequencies,

Isquare and 2Iref 1 parasitics introduce a phase shift between input and output of the
1
=R ad mr ,=IR ( transconductors, destroying the quadrature relation between V1 and

The "Sum of Squares" operation is implemented by the translinear V2 and therefore prohibiting oscillation of the system. Also, the
circuit of Fig. 5. Again, inputs VII, V12, V21 and V22 are tied to nodes amplitude is limited to values of at most 400mV due to the use
Vii and Vi2 of the two GmFREQ transconductors. Since the biasing of Caprio quads at the transconductors [18].
current of the input transistors QF11, QF12, QF21 and QF22 is 'B, IV. MEASUREMENTS AND SIMULATION RESULTS
the differential currents ±Ifi, i = 1, 2 will be given by ±Ifi =

i/Ixi, i = 1, 2. Using the translinear principle around the loops . 3

formed by transistorsQ* A - QiD and Q2A - Q2D, we get that was simulated, implemented and measured using the general purposeformed by transistors QIA QID and Q2A Q2D, we get that npn and pnp discrete bipolar transistors 2N3390 and 2N3702, 8nF
I II2 _ 2 16 capacitors and lkQ resistors. The power supply was set to Vcc=3V

s,quare = s,1 + 152 = 1B- 2'B 'B I 2I2R2 ) (1) and VEE=-3V. The FREQ transconductors' (Fig. 4(a)) biasing current

vcc 10
2 theory
0simulation

21 B~~~~~~~~~~ square 21B~~~~~~~~~~~~~~~~~~~~~~~~ ~measurements

QFIIQF12 ,15122J. QF QF 22 22 10

1B tl ,IB Ifl ,B B 2

QIAE QBQC ID 2D- Q.C B Q2A I

1~~~~ ,IB1f IB fB2l f2 104

IB_l IB_ lf2 103

S1 S ~~~~ ~~~~~ ~~~~~~~~~~~10-10-10- 10-
_VEE -VEE 'freq (A)

Fig. 5. Circuit design of the "Sum of Squares" block Fig. 6. Linear dependence of the oscillation frequency
by Ifreq
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Fig. 7. Relation between the amplitude of oscillation and Iref Fig. 8. Oscilloscope snapshot showing the instantaneous control of frequency
- the amplitude is independent of the frequency control
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