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Abstract— A G, — C architecture for a quadrature, sinusoidal os-
cillator with instantaneous, phase-preserving, linear frequency control
and independent, static amplitude control is presented. The architecture
is analyzed and closed-form expressions are given for both frequency
and amplitude. An implementation of the architecture using general
purpose discrete bipolar transistors has been tested. Simulation results
and measurements are demonstrated and compared to theory. The wide
frequency range of tunability and the low total harmonic distortion
observed, as well as the inherent phase preservation make the architecture
appropriate for use in analog communication schemes.

I. INTRODUCTION

Modulation schemes in various communications protocols demand
oscillators featuring a wide range of frequency tuning, fast frequency
control and low THD (Total Harmonic Distortion). Literature in this
field is vast and several designs focusing on some or all of the above
properties have been proposed.

Frequency control can be achieved by varying the bias voltage at a
varactor in an L.C-oscillator. However, LC-VCOs (Voltage Controlled
Oscillators) usually do not offer tuning ranges greater than 1 octave
and, therefore, the trend has shifted to current-mode implementations.
Topologies based on CCClIs (Current Controlled Current Conveyors)
([1] - [4]), OTA-C blocks ([5] - [7]), current-mirror low-pass filters
([8], [9]) and translinear circuits ([10] - [12]) are the ones most
commonly encountered. The oscillation frequency is usually linearly
controlled by a bias current.

Although frequency tunability is an attribute existing in most
current-mode oscillator designs, amplitude control is usually not
present and the amplitude of oscillation is limited by the components’
non-linearities. This leads to high harmonic distortion. Amplitude
control is needed so that the devices operate in their linear region
and the harmonic distortion of the output signal is kept low.

A few approaches have been presented for amplitude control that
prohibit saturation of signals. The most commonly used method is to
subtract the amplitude of oscillation, calculated by a peak detector,
from a reference signal, integrate the difference and provide this
signal as control to a negative resistance as shown in Fig. 1 (e.g. [7],
[13], [14]). However, dynamic feedback for the amplitude control
can result in instabilities ([15], [16]). Instabilities are interpreted as
fluctuations of the amplitude of oscillation; the magnitude of these
fluctuations is dependent on the initial conditions of the feedback
system. A remedy to this problem has been proposed in [15]
where the feedback system controls both the quality factor, @), and
the amplitude of oscillation. Nonetheless, the range of frequency
tunability remains small.

The proposed architecture in this work is based on a translinear
approach and handles amplitude control using a static (non-dynamic)
feedback, in this way avoiding any steady-state amplitude fluctua-
tions. Static feedback has been also proposed in [17], where, a similar
architecture based on operational amplifiers and multipliers had been
presented. The feedback is such that the amplitude and frequency
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Fig. 1.  Amplitude control through comparison of oscillation’s amplitude
with a reference value

controls are completely decoupled and non-interfering. Moreover, the
frequency control is instantaneous, wide range and phase-preserving,
making the architecture candidate for use in frequency modulation
schemes such as continuous-phase FSK (Frequency Shift Keying).
Due to amplitude control, THD is also kept at low values. Extensive
simulation results and measurements were conducted and found to
be in good agreement with theory, demonstrating the validity of the
architecture.

II. THEORETICAL ANALYSIS

An ideal (i.e. lossless) second order G,,, — C' quadrature oscillator
(Fig. 2) can be represented in the state space domain as
Vi) = -2
Va(t) EnB v (1)

ey

where the state variables of the system, Vi(t) and V5(t), are the
voltages on the capacitors. Consider the transformation of the state
variables into polar coordinates

Vi(t) =
Valt) =

IV ()] cos(0(1))
IV (6)][sin(6(t)) 0

where |[V(®)|| = /Vi(t)® + Va(t)? is the norm and O(t) =
Z(Vi(t), Va(t)) is the phase of vector V (t) = [Vi(¢) Va(t)]T. The
solution of (1) can then be written as

IIV@)]| = Ao and w(t) = 6(t) = Sl 3)

where Ag is a constant and depends on the initial conditions V7 (0)
and V5(0), and w(¥) is the angular frequency of vector V (¢), i.e. the
frequency of oscillation.
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Fig. 2. A simple second order G,, — C oscillator
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According to solution (3), system (1) features the desirable prop-
erty of instantaneous angular frequency (w(t)) control by adjusting
transconductance G, (). However, the norm of V (¢), i.e. the ampli-
tude of oscillation, remains constant and uncontrollable in time.

The purpose of the proposed architecture is to appropriately
alter system (1) so as to introduce static amplitude control while,
simultaneously, maintaining the property of instantaneous frequency
control. The modification is done in such a way so that the two
controls remain decoupled. In this Section the mathematical approach
is analyzed while in Section III a circuit implementation is presented.

To control the amplitude of oscillation while preserving the instan-
taneous frequency control, system (1) is modified as

Vi) = -0 )+ K(VO)Vi()
Va () E2Vi(6) + K (V(8)Va(t)

Using matrix notation, system (4) can be written as

C)

0 =Sm®
Cm(t)
A 0

Vi(t) = [ ]V(t)JrK(V(t))V(t) ®)

where K (-) is a scalar function appropriately chosen to drive and
maintain the amplitude of oscillation to a desired value (discussed
later). Left multiplication of (5) by VT (#) yields

VIOV = K(VE)VT V() (6)
Taking into account that VT (£)V(t)
VTV () =||[V(©®)||%. (6) takes the form

1d 2
g—t(HV(f)H)

VT@)V(t) and that

=K(VO)IVO)I® & o
& % (V@I = KV IV

Choosing K(-) to be a function of ||V (¢)|| only, K(V(t)) =
E(IV @), (7) reduces to

%(IIV(UII) =k(IVOIDIIV®I ®)

which implies that the way the norm of V() evolves in time, is
independent of its phase.
Multiplying (5) by VI (#) [0 '] from the left, we get

T 0 =15, Gu() 2
Vi) 3] ve—-S vl ©)
Using transformation (2), it can be also proved that
vio |} Ve —-ivor geo a0
Combining (9) and (10) we get
M@:M@:Gg” (11)

Considering the steady-state case, G, (t) and, therefore, w(t) are
constant, and ||V (¢)|| has reached a value determined by k(|| V (¢)|])-
In this case, V(t), as well as its two quadrature components V1 ()
and V5 (t), are oscillating with frequency w(t) and amplitude ||V (¢)]].
Equation (11) dictates that any changes of G, (t) affect only the
frequency, while (8) that any modification of k(||V (¢)||) will have
impact only on the amplitude of oscillation.

The instantaneous value of the frequency of oscillation w(t) can
be directly calculated from (11). The instantaneous value of the
amplitude of oscillation, as well as how fast it converges to a desired
reference value Ay, depends on the choice of k(-). k(-) can be any
function of ||V (¢)|| that satisfies the following properties [7]

o When the amplitude of oscillation reaches a desired value A,
then k(Arer) =0

o At ||V (B)|| = Arer the derivative of k(||V (¢)||) with respect
to ||V (t)|| should be strictly negative

« Function k(|| V (¢)]|) needs to be a monotonic decreasing func-
tion of ||V (¢)||

o k(||V(£)]] = 0) > 0 so that the oscillation self-starts

In the proposed architecture, k(||V (£)||) was chosen as

K(IIVOI) = GAZ; = VI (12)
where G is a gain factor.
Solving differential equation (8) using (12) yields
A’I‘E
V)] = / (13)

Arer \2\ 2042t
\/1_(1_(V<0>) )6 d

From solution (13), two points can be concluded. First, the amplitude
of oscillation will indeed converge to Acy, since lim:—o ||V (2)|| =
Arey; second, in a neighborhood of Arcg, ||V (¢)|| converges expo-
nentially fast to Arcf.

III. CIRCUIT ANALYSIS AND IMPLEMENTATION

The block diagram representation of the proposed architecture is
shown in Fig. 3. The core of the oscillator (blocks FREQ and the
two capacitors) remains the same as that of Fig. 2. Transconductances
G rrREQ, and therefore the frequency of oscillation, are controlled
by current [¢,c,. An additional feedback loop, composed of blocks
SoS (“Sum of Squares”), FB1 and FB2, has been added to control
the amplitude of oscillation. This feedback loop represents the
K(V())V(t) term of equation (5). The SoS block operates in
current-mode and outputs a current proportional to the sum of squares
of voltages V7 and V. Ip is the biasing current of the block and
B is a constant determined by the implementation of the circuit.
Current Isguare = IpB(B™1 — ||V ()]|?) has a form similar to (12)
which we would like to implement. However, B~ is a constant and
therefore cannot be varied. To achieve controllability of the amplitude
of oscillation, a second term needs to be added and this is done
through FB2 blocks and current [,.y.

The circuit implementation of transconductors Gy, rrEQ 1s shown
in Fig. 4(a). The differential input Vi,+ — Vi,_ is converted to a
differential current +17,; = :I:%, through a Caprio quad [18] formed
by transistors ()1 — Q4 and resistor R. The differential current +17,;
is scaled by Ifreq/lo from the network composed of (Qz1 — Qz4 and
@y1 — Qy4 and then output in a single-ended form. The total gain
of the transconductor is

(14)

Fig. 3.

Block diagram of the architecture
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Fig. 4.  Circuit implementation of (a) Gy,rrEg and (b) G pp1 and
G, o transconductors

and therefore adjustable through [f,¢4. A cascode implementation of
the output stage was chosen so as to provide high output impedance.

In order to reduce circuit complexity and because the input stage
of all transconductors is connected to either Vi or V5, only the
output stage of transconductors G, rp1 and G, B2 1s implemented
(Fig. 4(b)). Nodes V;1 — Vis4 are attached to the corresponding
nodes on transconductors G, rrEg. The control (tail) currents (Fig.
4(b)) of transconductors G'rrp1 and Gmrp2 are Lsguare and 21,
respectively. Therefore, their gains will be

Isqua're 2Iref
IR LR
The “Sum of Squares” operation is implemented by the translinear

circuit of Fig. 5. Again, inputs Vi1, V12, Va1 and Vi are tied to nodes

Vi1 and Vi3 of the two G, prEQ transconductors. Since the biasing

current of the input transistors Qr11, @ri2, @r21 and Qra2 is Ip,

the differential currents £/7¢;, ¢ = 1,2 will be given by £/y; =

:I:II—BIzi, ¢ = 1,2. Using the translinear principle around the loops

forriled by transistors Q14 — @1p and Q24 — Q2p, we get that

i+ 17 v
11 72
N _qp(1- 16

2Ip B( 2[332) (16)

GmFB1L = and Gprp2 = (15)

Isqua're — Isl + I.SZ — IB -

lVCC

Closed-form expressions can be derived for the calculation of the
frequency as well as the amplitude of oscillation. According to (11),
the frequency of oscillation will be

P GnrrEQ _ dfreq
T orC 2wl RC
Frequency is linearly and instantaneously controlled by current I ¢,.cq.
From Fig. 3, it can be readily deduced that the current fed back
to the capacitors from transconductors G, rp1 and GrFB2 is

amn

Irpvi = (Gmrp1 — Gmrp2) Vi, 1 =1,2 (18)

Combining equations (15), (16) and (18), the feedback current to
capacitors C' will take the form

Ip 2Ly VI ,

| o EEE, Vi, i=1,2
LR ( Is  2I2R? !
When the desired amplitude of oscillation A,cy is reached, ||V]| =

Arer and Ippv; = 0. Substituting in (19), we are able to find a
closed-form expression for the amplitude of oscillation at steady-state

Aref = V2LRy[1 — et
Ip

Two limitations are imposed on the values that [,..; can have.
First, from (20), I,.¢ has to be less than half of Ip. Second, I,;
cannot be larger than /,, which limits the maximum amplitude to
maz{Arer} = I,R. This implies that /.y has to be larger than
0.257/p. Combining the two constraints we get that

Irpv: = (19)

(20)

0.251p < Irey < 0.51p (21)

It should be noted that practical limitations due to the physics
and dynamics of bipolar transistors must be also considered for
both the amplitude and frequency of oscillation. At high frequencies,
parasitics introduce a phase shift between input and output of the
transconductors, destroying the quadrature relation between Vi and
V5 and therefore prohibiting oscillation of the system. Also, the
amplitude is limited to values of at most 400mV due to the use
of Caprio quads at the transconductors [18].

IV. MEASUREMENTS AND SIMULATION RESULTS

The architecture shown in Fig. 3 and described in Section III
was simulated, implemented and measured using the general purpose
npn and pnp discrete bipolar transistors 2N3390 and 2N3702, 8nF
capacitors and 1k2 resistors. The power supply was set to Vce=3V
and Vgg=-3V. The FREQ transconductors’ (Fig. 4(a)) biasing current

— theory
¢ simulation
¥ __measurements
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Fig. 5. Circuit design of the “Sum of Squares” block

lroq )

Fig. 6. Linear dependence of the oscillation frequency
by 1 freq
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Fig. 7. Relation between the amplitude of oscillation and I, ¢

I, was adjusted to 360uA, current Ip of the SoS block (Fig. 5) to
1mA and current /p biasing transistors s+ and @Q;,— of the FREQ
transconductors (Fig. 4(a)) was set to 10uA.

First, the relation between current [f.., (Fig. 4(a)) and the
frequency of oscillation as well as the range of operating frequencies
were tested. In Fig. 6, simulation and measurements are compared
to theoretical results and are shown to be in very good agreement.
Although the frequency of oscillation can be linearly controlled by
Ifreq for almost 2 decades (2kHz-130kHz), measurements showed
that the desired independence between the amplitude and frequency
controls was observed from 7kHz to 130kHz.

Next, the validity of equation (20) that relates current .y to the
amplitude of oscillation was examined. Figure 7 shows results for
the case where /.., was set to 180uA corresponding to a frequency
around 10kHz and I,.y was swept from 250p:A (0.251p) to S00pA
(0.51R). Frequency remained constant while the amplitude of oscil-
lation varied from O to 300mV. Simulation results and measurements
almost match and follow the same trend as the results predicted from
theory. Simulation results and measurements of THD showed also
that its value remained well below 2.5%.

The instantaneous frequency control property of the circuit is
displayed in Fig. 8. Current [ ¢,c4 is controlled externally from a pulse
and instantaneous changes on its value are immediately reflected
as instantaneous changes in frequency. Moreover, the instantaneous
phase is preserved during frequency jumps.

Finally, simulations of the topology were performed using high
fr RF bipolar transistors, the npn BFG540 and the pnp BFT92.
Simulation results showed that oscillations at 6.5MHz and with very
low THD can be achieved.

V. CONCLUSIONS

A G, — C architecture for a quadrature sinusoidal oscillator has
been theoretically analyzed, implemented and tested. The architecture
features linear and instantaneous frequency control over a wide
range, phase preservation during frequency changes, static amplitude
control independent of the frequency control and low harmonic
distortion. Measurements and simulation results are found to be in
good agreement with theory.
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