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ABSTRACT
In this work we ask the fundamental question: How many bits of
information can be stored in a crossbar switching network?
The answer is trivial when the switches of the network are in series
with diodes (semi-conductive) but it is complicated when the
switches are regular contacts. Exact explicit expressions and sim-
ple asymptotic bounds of the storage capacity (in bits) are derived
for the general crossbar switching network with regular contact
switches.

Categories and Subject Descriptors
B.3 [Memory Structures]: Misc.; H.0 [Information Systems]

General Terms
Design, Measurement, Performance, Theory.

Keywords
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1. INTRODUCTION
Crossbar switching networks (CSNs) have been used extensively
in communication and computation systems. Recent advances in
nanotechnology have enabled the construction of crossbar switch-
ing structures using nano-sized wires [1], [2]. The small size and
high density of these structures have motivated the study of their
possible applications as high density interconnect, computation
and information storage devices [3]-[8]. 

The storage capacity of crossbar switching networks, Figure 1, is
derived in this paper. Both exact explicit expressions and simple
asymptotic bounds are given. A more compact exact expression as
well as an asymptotic expression of the storage capacity can be
found in a follow up work [9].

We consider general crossbar switching networks whose switches
between each horizontal and each vertical wire are regular contacts
with two possible states, one of high and one of low resistance.
This is in contrast to crossbar switching networks whose switches
have semi-conductive properties as that shown in Figure 2.
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2. INFORMATION STORAGE IN CSNS

In order to proceed in estimating the information capacity of a gen-
eral  CSN like that of Figure 1, we make two assumptions
that should be considered reasonable for every practically useful
implementation. First, the  switches are assumed to have a

high ratio of  resistance and can be switched on and off

independently of each other. Second, the ratio of  over the total

resistance of a wire (or nanotube) is assumed to be relatively high.
In the analysis that follows these assumptions allow us to think of
CSNs as being composed out of ideal switches and ideal wires.

Figure 1.  crossbar switching network N M×
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Figure 2. Switches in series with (ideal) diodes 
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With a pair  of wires we mean the pair of the  horizon-

tal and  vertical wire. The pair  also corresponds to the
position of the switch between those two wires. For pictorial sim-
plification we put a black dot at the intersection of the pair  to
represent a closed switch. The convention is shown in Figure 3
below. 

2.1 Switches with and without diodes
Suppose for the moment that all switches were in series with ideal
diodes (the cathodes are connected to horizontal wires), exactly as
in Figure 2. Moreover, suppose that the  switches have a
given on-off configuration. In order to extract the particular config-
uration we can do a series of  experiments: For every pair

, ,  we “measure” the current

, see Figure 4. If  is non-negligible (recall the two assump-

tions we made) we conclude that the switch  is closed.

The important point here is that the  connections are inde-
pendent in the sense that the measured current, Figure 4, depends
on the state of switch  and it is independent of the state of any
other switch. Whereas, in the case of the CSN of Figure 1 this is
not true. For example, performing the same experiment for the pair

 in the two different configurations of Figure 5 we get the
same result. 

Therefore in the case of CSNs without diodes, the results of the
different experiments are neither independent nor they correspond
to unique states of the particular switches.

Now, suppose that instead of examining individual pairs of wires
we consider the set of all  experiments as a whole. By doing
so we conclude that the pairs of connected wires in the left config-
uration of Figure 5 are:  and  while the pairs of con-

nected wires in the right configuration are: , , 

and . This allows us to distinguish the two configurations of
Figure 5. The same is not true though for the two configurations in
Figure 6.

Note that the configurations of Figure 6 cannot be distinguished
based on the states of their switches (i.e. the left configuration has
all switches closed while the right one has only three one them
closed.) This is because the switches are not directly accessible to
the outside of the CSN, the switches are hidden inside the CSN,
Figure 7. In this sense, the two configurations above have to be
considered as being identical.  

The above examples and discussion can be directly extended to the
case of the general  CSN. Therefore we are forced to think

of its different configurations as -terminal electrical
devices because it is their (total) electrical behavior that differenti-
ates them and not the setup of the switches.

Note that in the case of the switching network of Figure 2 there are

exactly  possible electrical behaviors, or equivalently elec-
trical devices, that can be realized by the different configurations
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Figure 3.  Notational convention: closed switches are shown as dots
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Figure 4. Extracting the configuration of a CSN 
that has semi-conductive switches.    
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having the same conductivity proprties.
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of the switches. In this sense we can say that the information

capacity of the network is  bits (throughout

the paper  stands for the logarithm base 2). Similarly, suppose

that the network of Figure 1 can realize  electrical devices by the
different configurations of its switches. Then, its storage capacity
is . 

In order to proceed in the calculation of  it is important to give
some more formal definitions, this is done in the following section.

3. THE NUMBER OF DEVICES
Definition 1: A device  is a CSN of Figure 1 along with a con-
figuration of its switches.

To simplify our discussion we use the subscript  for the horizon-

tal wires and the subscript  for the vertical wires of the CSN.
Then the set of all wires is:

.

Following our discussion in Section 2, every device is uniquely
characterized by the way its wires are connected to each other. In
other words, the device is uniquely characterized by the partition
of the set  into maximal subsets of wires that are electrically con-
nected. Such a partition will be called the connectivity partition of
the device. 

Example 1: The connectivity partitions of the devices in Figure 5
are,  and 

respectively. The first one has two blocks (i.e. connected compo-
nents) while the second has only one.

Definition 2: Two devices  are identical if and only if they

have the same connectivity partition. 

Example 2: In Figure 8 we see the sixteen configurations of the
switches of a  CSN. There are only  devices (i.e. electrical

behaviors) that are realized. The last  configuration realize the
same device since all wires are connected together. 

A simple asymptotic lower bound of the number of bits  that can

be stored in an  CSN is derived in the following lemma.

Lemma 1: The information capacity, , of an , CSN is

asymptotically equal to or greater than  bits as .

Proof: There are  configurations of the switches such that every
horizontal wire is connected to exactly one vertical wire. The situ-
ation is shown in Figure 9.

For every  there is some , with , such that [10]:

 . 

Therefore we have  as . 

The following theorem provides an exact expression of the infor-
mation capacity of an  CSN. The expression involves the

Stirling numbers of the second kind . By its definition

 is the number of distinct ways that a set of  elements

can be partitioned into  non-empty subsets [10]. A convenient

expression of  is given by (1), see for example [11]. 

(1)

Theorem 1: The information capacity of an  CSN is

 where  is given by expression (2) and  is the
Stirling number of the second kind.

(2)

Instead of enumerating the devices using a brute force, which is
not an easy task, we use the following standard trick of combinato-
rics to prove the theorem. We construct a bijective map between
the set of devices and another set whose elements we can enumer-
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ated easier. This is done in the following lemma. Note that the sets
of the horizontal and the vertical wires of an  CSN are

denoted by  and 

respectively. Moreover for any two sets ,  includes the

case  and  is the number of elements in the set . 

Lemma 2: The set of connectivity partitions of an  CSN can

be mapped bijectively into the set of six-tuples 
that (are defined below and) have the following properties:

1. , it may be .

2. , it may be .

3. : nonnegative integer s.t. .

4. If ,  is a partition of  into  non-empty 

subsets otherwise .

5. If ,  is a partition of  into  non-empty 

subsets, otherwise .

6. A bijective map  from  to . (if  then  is taken

 to be the dummy function 

Proof of lemma 2: Given a device  let 

be its connectivity partition for some positive integer . Also let

 be the set of horizontal wires that are not connected to any ver-

tical wire. Similarly, let  be the set of vertical wires that are not

connected to any horizontal wire. We set, ,  and

. (It may be  or ). 

Without loss of generality we can assume that all elements in 

and  are contained in the last  blocks of , i.e.

. (Note that in this case ,

,...,  are singletons.) Also note that each of the remaining

subsets , ,...,  must contain at least one horizontal and one

vertical wire. For every  we can decompose 

into  where  and . We define , 

to be the partitions ,

 of the sets  and  respectively.

Note that  and  are connectivity partitions.

Up to here we have shown that  implies the five-tuple

. The six-tuple is completed by the mapping  from

 to  such that  for every , assum-

ing that . If  we set  to be the dummy function 

defined in property 6 of the lemma.

To go from a six-tuple  to a connectivity parti-

tion , and so to the corresponding device , we switch-on all

switches  such that  belongs to some ,  and 

belongs to . We switch-off all the remaining switches.

Finally, it is straight forward to verify that the mapping between
connectivity partitions and the set of six-tuples is bijective. 

Proof of theorem 1: There is the trivial case  and 
where no wire is connected to any other wire. (Note that if one of
these equalities holds then the other one must hold as well because
it is impossible to have all horizontal wires disconnected while
some of the vertical ones are connected to each other and via
versa.) We count 1 for the above case and exclude it in the follow-
ing analysis. 

Given some  and  we
choose the sets of disconnected horizontal and vertical wires

 and  such that  and . There are

 ways to do so. For ,

we choose partitions  and  of  and  respectively,

each having exactly  blocks. By the definition of the second

Stirling numbers there are  ways of doing

so. Finally, for every partition pair  there are  distinct

bijective mappings from  to . Summarizing the above we get

expression (2). 

Example 3: Figure 10 presents the graph of the capacity  of

 CSNs with  ranging from one to one hundred along with

the two asymptotic bounds  and  of lemma 1 and
corollary 1 (see next page) respectively.

N M×

H 1h 2h … Nh, , ,{ }= V 1v 2v … Mv, , ,{ }=

A B, A B⊂

A B= A A

N M×

H V q P R f, , , , ,( )

H H⊂ H ∅=

V V⊂ V ∅=

q 0 q min N H M V–,–{ }≤ ≤

q 0> P H H– q

P ∅=

q 0> R V V– q

R ∅=

f P R q 0= f

fd: 0{ } 0{ }→

D PD T1 T2 … Tr, , ,{ }=

r

H

V

i H= j V=

q r i– j–= i 0= j 0=

H

V r q– i j+= PD

H V∪ Tq 1+ … Tr∪ ∪= Tq 1+

Tq 2+ Tr

T1 T2 Tq

k 1 2 … q, , ,= Tk

Tk Hk Vk∪= Hk H⊂ Vk V⊂ P R

P H1 H2 … Hq, , ,{ }=

R V1 V2 … Vq, , ,{ }= H H– V V–

P R

PD

H V q P R, , , ,( ) f

P R f Hk( ) Vk= k 1 2 … q, , ,=

q 0> q 0= f fd

H V q P R f, , , , ,( )

PD D

a b,( ) a S S P∈ b

f S( )

 

H H= V V=

i 0 1 … N 1–, , ,= j 0 1 … M 1–, , ,=

H H⊂ V V⊂ H i= V j=

N
i 

  M
j 

  q 1 2 … min N H M V–,–{ }, , ,=

P R H H– V V–

q

S N i– q,( )S M j– q,( )

P R,( ) q!

P R

 

B

N N× N

N Nlog 2N Nlog

Figure 10: Information Capacity  of  CSNs 

with .

B N N×

N 1 2 … 100, , ,=

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

2N Nlog

N Nlog

B

N

Bits



There are alternative expressions of the number of devices . One
of them is given in lemma 3 and is used in the derivation of an
asymptotic upper bound of  in corollary 1 below. 

Using more involved mathematical analysis it is possible to get
other more compact expressions of . A few can be found in [9]
along with a simple asymptotic expression.

Lemma 3: The number of devices  can be expressed as:

 (3)

Proof: The proof is similar to that of theorem 1. Here we count
first with respect to the number  of the blocks in the partitions of
the sets of the connected wires. Then we count with respect to the
number of disconnected horizontal and vertical wires. 

Corollary 1: The information capacity of an  CSN is

asymptotically less than  bits as .

Proof: Starting from equation (3) we have:

(4)

From (1) we have that:

(5)

similarly we have:

(6)

Replacing (5) and (6) into (4) we get:

Therefore we have  and the proof

of the lemma is complete. 

4. CONCLUSIONS 
The information storage capacity of crossbar switching networks,
with regular contact switches, was derived explicitly. It was also
shown that the capacity of an  network is asymptotically

between  and . Comparing the result to the infor-
mation capacity of crossbar switching networks with semi-con-

ducting switches, which is , we conclude that the later ones, if
available, are much more efficient as information storage devices.
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