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Abstract — In classical communication systems, in-

formation transmission is always associated with en-

ergy consumption. Coding, can be used in certain

channels to reduce the amount of energy required per

transmitted information bit. The basic concepts of

energy reduction coding and their relations are pre-

sented in the framework of noiseless finite state chan-

nels. The optimal relation between energy cost and

communication rate is derived and demonstrated in

circuit applications.

I. Introduction

Error correction coding has a long and well established his-
tory. Its tremendous importance and applicability results from
the need to build reliable communication, storage and com-
putation systems. Reliability reflects to the completion of
operations with very small probability of error.

During the past few years another type of coding has
emerged in the field of VLSI circuits, the energy reduction
coding. It is motivated by the need to build circuits, and
therefore complete systems, that operate with minimal en-
ergy (power) requirements. The objective of energy reduction
coding is to reduce power consumption in contrast to that of
the error correction coding.

Data compression can be thought as an energy reduction
mechanism since reduction of the size of data usually results to
reduced transmission time and therefore reduced total energy
consumption. The essential difference between data compres-
sion and energy reduction coding is that in the later case re-
dundancy is introduced in the data. Although this may sound
contradictory, the example of the next section is convincing.

The purpose of the paper is to present the idea, the basic
concepts and the latest results in the area of energy reduc-
tion coding and provide a mathematical framework for a more
general study of the problem. The motivation of this research
comes from real applications in VLSI circuits.

II. Motivating Example

Energy reduction coding was introduced in the design of low
power inter-chip communication [3, 16, 17, 15] as a technic to
reduce the instantaneous and time-average power consump-
tion of inter-chip communication circuitry (buses). It was
demonstrated that by introducing temporal or spacial redun-
dancy in the transmitted data in a certain way (or equivalently
by expanding the communication device) it is possible to re-
duce the power (energy) consumption.

An inter-chip bus is a basic communication device that
transfers data between chips. In many cases it can be re-
garded as being error-free and its basic structure looks as in
figure 1. It consists of the drivers, the lines (wires laid out in
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Figure 1: Simple inter-chip bus

parallel) and receivers. Here for simplicity we consider a bus
with 4 lines.

A data vector u(k) = [u1(k), u2(k), u3(k), u4(k)] of binary
values is transmitted (from the left to the right) at every dis-
crete time (clock cycle) k = 0, 1, 2, . . .. The drivers on the left
translate the binary values into voltages of the lines with the
convention that 0 corresponds to 0 Volts and 1 corresponds
to Vdd > 0 Volts. Every line has a (unavoidable) parasitic
capacitance to ground equal to C Farads.

When there is a change of value, i.e. ui(k − 1) = 0 and
ui(k) = 1 or via versa, and only then, there is loss of energy E
due to charging/discharging of the parasitic capacitor. It is:
E = CV 2

dd/2 and so at time k there is total energy loss equal
to E(k) = W(u(k − 1) ⊕ u(k))E, where W is the Hamming
weight function.

If ui(k), i = 1, 2, 3, 4, k = 1, 2, . . . are independent random
variables uniformly distributed in {0, 1}, then the expected
energy loss at time k is: E{E(k)} = 4E/2 = 2E.

Suppose we modify our communication scheme (bus) by
adding one more line, identical to the other ones, that carries
a bit sequence c(k). Also, instead of vector u(k) we transmit
another vector x(k). The sequences x and c are defined as
follows:

x(k)
.
= u(k) , c(k)

.
= 0 if W(u(k) ⊕ x(k − 1)) ≤ 2

x(k)
.
= u(k) , c(k)

.
= 1 if W(u(k) ⊕ x(k − 1)) > 2

Since sequence x is transmitted through the bus, the energy
loss at time k, is:

E′(k) = min{W(u(k) ⊕ x(k − 1)), 4 −W(u(k) ⊕ x(k − 1))} +

+W(c(k) ⊕ c(k − 1))E

If the random vectors u(k), k = 1, 2, . . . are independent
and uniformly distributed then so are u(k) ⊕ x(k − 1), k =
2, 3, . . .. Moreover, c(k), k = 2, 3, . . . are independent and uni-
formly distributed as well. Therefore:

E{E′(k)} =
1
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which gives E{E′(k)} = 25E/16 that is less than 2E, i.e. the
expected energy loss when no coding was used! So, by expand-
ing the bus and encoding the data we were able to reduce the
energy consumption!

III. The Dual View of Redundancy

In the previous example we started with a 4-line bus, expanded
it by adding one more line and then applied a coding scheme
that allowed for the transmission of 4 bits every time k, in
other words, the capacity of the expanded-and-encoded bus
was equal to that of the original bus.

We can pose the energy reduction coding problem differ-
ently. Suppose that we are given the 5-line bus but we are not
allowed to modify it. When the sequence of transmitted vec-
tors is formed out of independent and uniformly distributed
random vectors, the information rate through the bus is 5 (in-
formation) bits per clock cycle k = 1, 2 . . . and the expected
energy cost (also per clock cycle) is: E{E(k)} = 5E/2 =
2.5E. This of course translates to energy per bit equal to
E{E(k)}/5 = E/2.

Now we can ask the question: Is it possible to transmit
information at a lower energy cost (per information bit), as-
suming we can accept a lower transmission rate?

The example of the previous section provides a positive
answer. If we transmit only 4 information bits each time
and use the 5th line of the bus to transmit a “coding bit”
it is possible to achieve an energy cost per bit equal to
E{E′(k)}/4 = 25E/16/4 = 25E/64 which is less that the E/2
of the fully-used 4-line bus. The penalty of course is the rate
reduction, the 5-line bus is utilized only by a factor of 4/5.

IV. General Mathematical Framework

for Energy Reduction Coding

The simple example of Section II motivates us to seek for
more general classes of communication channels where energy
reduction coding is meaningful. Moreover, is it interesting
to know what is the best possible trade off between energy
reduction and utilization (percentage of the useful capacity)
of the channel.

Definition IV.1 The Noise-Less Finite State channel,
(NLFS), is a device capable of transmitting arbitrary sequences
of symbols in a finite set S. The cost of transmission of a sym-
bol y ∈ S is a real nonnegative number, E(x, y), that depends
on y and the symbol x that was transmitted exactly before y.
The state of the channel is identical to the symbol that was
transmitted last. The channel starts from an initial state x0.
(For technical reason we assume that there is some x ∈ S
such that E(x, x) ≤ E(y, z) for every y, z ∈ S. Without loss
of generality we can also assume E(x, x) = 01.)

Note that any symbol can follow any other symbol, therefore
the channel is memoryless as far as state sequencing concerns.
The channel has memory regarding the transmission cost of
symbols. We refer to the quantity E(x, y) as the transition
cost, exactly because it is associated to the transition from
state x to state y.

1If E(x, x) is not zero, we can substract it from function E and
added it to any estimate of the operating cost of the channel.

Example IV.1 For example, the set of symbols (and states)
of the following NLFS channel is S = {1, 2, 3, 4} and the tran-
sition costs are shown in figure 2. Assuming the channel starts
from state 3, the cost of transmitting sequence 1, 4, 2, 1 is:
1 + 4.8 + 2.5 + 1.5 = 9.8.
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Figure 2: NLFS Channel

The capacity of an NLFS channel is H = log2(|S|) bits of infor-
mation per use the channel. This information rate is achieved
only when the channel transmits the outcomes of a source
emitting independent symbols uniformly distributed in S. In
this case the expected cost per channel use is:

E =
1

|S|2
∑

x,y∈S
E(x, y) (1)

The corresponding cost per bit, of information transmitted, is
EH

b = E/H. In the previous example it was: H = 2, E = 3.39
and EH

b = 1.69.

V. Entropy and Cost; Definitions

A code CL
P of length L and associated probability distribution

P , is a subset of SL with
∑

c∈CL
P

P (c) = 1. For convenience

we consider P as a function on SL with P (c) = 0 for every
c ∈ SL − CL

P .

Definition V.1 The entropy per channel use of the code is:

H(CL
P ) = − 1

L

∑
c∈CL

P

P (c) log2 P (c) (2)

The cost per channel use of the code is:

E(CL
P ) =

1

L

 ∑
c∈CL

P

P (c)

L−1∑
i=1

E(πi(c), πi+1(c))+

+
∑

c,d∈CL
P

P (c)P (d)E(πn(c), π1(d))

 (3)

where πi(c) is the ith entry of vector c 2. The expected cost,
per bit of information transmitted, is:

Eb(CL
P ) = E(CL

P )/H(CL
P ). (4)

The utilization factor of the code is the ratio of the entropy per
channel use of the code over the capacity H of the channel.

α(CL
P ) = H(CL

P )/H. (5)

2Note that the first sum expresses the cost of the codewords
whereas the second sum expresses the cost of transition between
consecutive codewords.



Example V.1 Consider the NLFS channel of figure 2 and
the code C2

U with codewords {(2, 2), (1, 2), (2, 1), (1, 3)} and
uniform associated probability distribution U . Then, H(C2

U ) =
2, E(C2

U ) = 3.14, Eb(C2
U ) = 1.57 and α(C2

U ) = 0.5. Note that
the energy per bit of the code is less than that of the uncoded
channel (1.57 vs. 1.69). The utilization of the code though is
only 1/2.

In Section VIII, analytical expressions are provided for the
theoretically minimum possible energy per bit, using coding,
as a function of the entropy per channel use.

VI. Properties of Energy Reduction Codes;

Concatenation and Probability Mixing

Definition VI.1 Let CL
P and CM

Q be two codes of lengths L, M
and with associated probability distributions P, Q respectively.
We define their concatenation, CL

P � CM
Q , to be the code of

length L + M that has the codewords (z, w) : z ∈ CL
P , w ∈ CM

Q

and associated probability distribution, P � Q such that: P �
Q(x1, . . . , xL+M ) = P (x1, . . . , xL)Q(xL+1, . . . , xM ) for every
x1, x2, . . . , xL+M ∈ S. We also use the “power” notation,(CL

P

)�k
for the code,

CL
P � CL

P � · · · � CL
P︸ ︷︷ ︸

k − times

Same basic yet useful properties of concatenated codes are
summarized in the next lemma.

Lemma VI.1 For every two codes CL
P and CM

Q of lengths
L, M and distributions P, Q respectively, we have that:

H
((

CL
P

)�k
)

= H(CL
P ) (6)

E
((

CL
P

)�k
)

= E(CL
P ) (7)

Eb

((
CL

P

)�k
)

= Eb(CL
P ) (8)

H(CL
P � CM

Q ) =
L

L + M
H(CL

P ) +
M

L + M
H(CM

Q ) (9)

E(CL
P � CM

Q ) =
L

L + M
E(CL

P ) +
M

L + M
E(CM

Q ) +
2e

L + M
(10)

H
((

CL
P

)�k

�
(
CM

Q

)�r
)

=

=
kL

kL + rM
H(CL

P ) +
rM

kL + rM
H(CM

Q ) (11)

E
((

CL
P

)�k

�
(
CM

Q

)�r
)

=

=
kL

kL + rM
E(CL

P ) +
rM

kL + rM
E(CM

Q ) +
2e

kL + rM
(12)

where |e| ≤ Emax and Emax = maxx,y∈S E(x, y).

Another operation between two codes of the same length is
probability mixing.

Definition VI.2 Consider two codes CL
P , CL

Q of the same
length L and a constant α ∈ (0, 1). We define the new code

αCL
P ⊕ (1 − α)CL

Q = CL
αP+(1−α)Q.

The following lemma states some useful facts of the probability
mixing operation on codes. The proof follows directly from the
concavity of entropy function and the linearity of the cost per
channel use.

Lemma VI.2 For every two codes CL
P and CL

Q of the same
length we have:

H
(
αCL

P ⊕ (1 − α)CL
Q

)
≥ αH(CL

P ) + (1 − α)H(CL
Q) (13)

and

E
(
αCL

P ⊕ (1 − α)CL
Q

)
= αE(CL

P ) + (1 − α)E(CL
Q). (14)

For every given length L there are two codes that are useful
in achieving technical results. The first one, CL

0 , contains only
one element, a vector (x, x, . . . , x) ∈ SL for which E(x, x) =
miny,zE(y, z)3. It is of course,

H(CL
0 ) = 0,

and if we follow the assumption of definition IV.1, i.e.
E(x, x) = 0, we also have that,

E(CL
0 ) = 0.

The properties above can be combined with (13) and (14) of
lemma VI.2 to give the following result.

Lemma VI.3 Let CL
P be a code of entropy per channel use H

and cost per bit Eb. For every H ′, 0 < H ′ < H there is a code
C of length L such that, H(C) = H ′ and Eb(C) ≤ Eb.

Proof: The function f : [0, 1] → � such that

f(α) = H
(
αCL

P ⊕ (1 − α)CL
0

)
is continuous. Moreover f(0) = 0 and f(1) = H, and so there
is some α′ ∈ (0, 1) for which f(α′) = H ′. In addition,

Eb

(
α′CL

P ⊕ (1 − α′)CL
0

)
=

E (
α′CL

P ⊕ (1 − α′)CL
0

)
H (α′CL

P ⊕ (1 − α′)CL
0 )

≤ α′E(CL
P ) + (1 − α′)E(CL

0 )

α′H(CL
P ) + (1 − α′)H(CL

0 )

= Eb.

So C = α′CL
P ⊕ (1 − α′)CL

0 is an appropriate code. �

The second code, often involved in the proofs, CL
U , con-

tains all vectors in SL and is associated with the uniform
probability distribution U . Directly from the definitions we
have that,

H(CL
U ) = H

and
E(CL

U ) = E
where H = log2 (|S|) and E is given by (1). We have the next
lemma whose proof is similar to that of lemma VI.3.

3Note that there is at least one such element x in S.



Lemma VI.4 Let CL
P be a code of entropy per channel use H,

with H < H, and cost per bit Eb. Consider the family of codes
C(α) = αCL

U ⊕ (1 − α)CL
P where α ∈ [0, 1]. The entropy per

channel use, H(C(α)), is a continuous and strictly increasing
function of α, ranging from H(C(0)) = H to H(C(1)) = H.
The cost per bit is a continuous function of α with Eb(C(0)) =
Eb and Eb(C(1)) = E.

VII. Optimal Cost VS. Rate Relation;

The Limiting Cost per Bit Function

and Its Properties

The desirable in using a code is to transmit information at
a cost per bit lower than that of the uncoded channel and
do so at an acceptable rate (transmitted information bits per
channel use). This is expressed by the following definition.

Definition VII.1 A pair (H, Eb) of entropy per channel use,
cost per bit, is called achievable (using coding) if there is a
sequence of codes C(k), k = 1, 2, . . . (not necessarily distinct,
nor of the same length) such that for some H ′ ≥ H and some
Eb

′ ≤ Eb it is limk→∞ H(C(k)) = H ′ and limk→∞ Eb(C(k)) =
Eb

′.

It is important to know what is the “best” possible trade off
between the information rate through the channel and the
energy cost per bit.

Definition VII.2 The limiting cost per bit is the function of
the entropy per channel use: E�

b : (0,H] → [0,∞) such that,
E�

b (H) = inf {Eb : (H, Eb) is achievable}.
Note that the set {Eb : (H, Eb) is achievable} is nonempty for
every H ∈ (0,H]. So the limiting cost per bit function is well
defined.

Lemma VII.1 The limiting cost per bit function, E�
b , is in-

creasing and continuous. For every H ∈ (0, 1] there is se-
quence of codes C(k), k = 1, 2, . . . such that limk→∞ H(C(k)) =
H and limk→∞ Eb(C(k)) = Eb(H). The function f(H) =
HE�

b (H) is convex.

Proof: If a pair (H, Eb) is achievable then, for every H ′ <
H, the pair (H ′, Eb) is achievable as well. Therefore E�

b is
increasing.

Suppose the function is discontinuous from the left at H.
Then there is some ε > 0 and a sequence Hk, k = 1, 2, . . . con-
verging to H such that Hk < H, and E�

b (Hk) < E�
b (H) − ε for

every k (recall that E�
b is increasing). The sequence E�

b (Hk) is
bounded from below as well, therefore it must have a converg-
ing subsequence. Without loss of generality we assume that
limk→∞ E�

b (Hk) = ξ, ξ ≤ E�
b (H) − ε. By the definition of the

limiting cost per bit function, for every k we can find a code
C(k) such that H(C(k)) ≥ Hk − 1

k
and Eb(C(k)) ≤ E�

b (Hk)+ 1
k
.

Therefore, there is a subsequence of the codes that achieves
(H, Eb − ε). This is a contradiction.

The continuity from the right is an immediate consequence
of lemma VI.4 and the fact that E�

b is an increasing function.
By the definitions of the achievable pairs and the limit-

ing cost per bit as well as the fact that 0 ≤ H(C) ≤ H,
for every code C, we can conclude (using Heine-Borel the-
orem) that for every H ∈ [0, 1], there is a sequence of
(not necessarily distinct) codes C(k), k = 1, 2, . . . such that,
limk→∞ H(C(k)) = H ′ and limk→∞ Eb(C(k)) = E�

b (H) for

some H ′ ≥ H. Using the result of lemma VI.3 we conclude the
existence of another sequence of codes, Ĉ(k), k = 1, 2, . . . such

that limk→∞ H(Ĉ(k)) = H and limk→∞ Eb(Ĉ(k)) = E�
b (H).

This proves the third part of the lemma.
Now, consider two codes, CL

P and CM
Q and set H1 = H(CL

P ),
Eb1 = Eb(CL

P ), H2 = H(CM
Q ) and Eb2 = Eb(CM

Q ). For any given
α ∈ (0, 1) we can find a pair of strictly increasing sequences of
positive integers, kn, rn, n = 1, 2, . . . such that, knL/(knL +
rnM) approaches 1−α and rnM/(knL+ rnM) approaches α.
For convenience we set 1 − α = α̃. Identities (11) and (12)
give,

lim
n→∞

H
((

CL
P

)�kn �
(
CM

Q

)�rn
)

= α̃H1 + αH2

and

lim
n→∞

E
((

CL
P

)�kn �
(
CM

Q

)�rn
)

= α̃H1Eb1 + αH2Eb2

Therefore, the pair(
α̃H1 + αH2,

α̃H1Eb1 + αH2Eb2

α̃H1 + αH2

)
is achievable and by the definition of the limiting cost per bit
we have:

(α̃H1 + αH2)E�
b (α̃H1 + αH2) ≤ α̃H1Eb1 + αH2Eb2.

Given any H1, H2 in [0, 1] there exist two sequences
of codes C1(k) and C2(k), k = 1, 2, . . . such that
limk→∞ H(C1(k)) = H1 and limk→∞ Eb(C1(k)) = E�

b (H1)
as well as limk→∞ H(C2(k)) = H2 and limk→∞ Eb(C2(k)) =
E�

b (H2). The existence of the sequences is implied by the part
of the lemma that was just proved. Using the last inequality
we have that for every k it is:

[α̃H(C1(k)) + αH(C2(k))] E�
b (α̃H(C1(k)) + αH(C2(k))) ≤

≤ α̃H(C1(k))Eb(C1(k)) + αH(C2(k))Eb(C2(k)).

Because Eb is continuous, taking the limit of the above expres-
sion we obtain

(α̃H1 + αH2)E�
b (α̃H1 + αH2) ≤ α̃H1E�

b (H1) + αH2E�
b (H2).

which concludes the proof. �

VIII. Limiting Cost per Bit

Analytical Expressions

The limiting cost per bit function, E�
b , can be derived analyt-

ically and the result is summarized in the following theorem.
The proof is long and tedious and can be found in two parts,
in [8] or [9], and [10]. An alternative proof can be found in
[11].

Theorem VIII.1 The limiting cost per bit at entropy per
channel use H is4,

Eb(H) = ln(2) ·
(

γ − 1
∂

∂γ
ln (ln (µ(γ)))

)−1

(15)

4There is one exception: if there are some ζ, θx, x ∈ S, such
that E(x, y) = ζ + θx − θy , for every x, y, then it is E�

b (H) = ζ/H.



where γ is the unique positive solution of the equation:

H = − 1

ln(2)
γ2 ∂

∂γ

(
ln (µ(γ))

γ

)
(16)

and µ(γ) is the maximal eigenvalue of the matrix:

W (γ) =
[
e−γ E(x,y)

]2n−1

x,y=0
(17)

Furthermore, the minimum is attained asymptotically by a se-
quence of codes C(k), k = 1, 2, . . . such that C(k) contains
all vectors c in Sk and is associated with the probability dis-
tribution Pk such that Pk(c) equals the probability of c being
the outcome of the stationary, ergodic, Markov process having
transition probabilities:

Pr (y|x) =
1

µ(γ)

gy

gx
e−γ E(x,y)

where g = (gx)x is the right eigenvector of matrix W (γ) that
corresponds to µ(γ).

IX. Application:

On-Chip Buses as NLFS channels

On-chip buses are communication channels within micropro-
cessors that consist of parallel electrical lines, as in figure 1
but with more complex parasitic elements and more involved
expressions of energy consumption [13]. In most applications
they can be regarded error-free and can be treated as NLFS
channels.

On-chip communication through buses consumes a signifi-
cant part of the total operating power and many techniques
have been proposed to reduce it, e.g. [1, 15, 12, 7, 6, 5, 4].
A question stated and answered in [8] was: How much power
(energy) reduction is possible using coding? Using the energy
model in [13] and theorem VIII.1 we get the graph of normal-
ized Eb for a family of buses with 2, 4 and 8 lines and coupling
ratio λ = 5 (see [13]).
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Figure 3: Best achievable energy vs. rate performance in
a class of on-chip buses

X. Conclusions

The concept of energy reduction coding has been discussed
and a general mathematical framework has been introduced
to study it. The analysis has been based on the concepts of
noiseless finite state channel, entropy per channel use, cost per
channel use, cost per channel bit and channel utilization. The
performance limits of energy coding have been derived.
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