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Abstract: In this work we ask the fundamental question: Is it pos-
sible to achieve. single-pole behavior using a single grounded
URC? To answer this question affirmatively, we present two novel
integrator topologies. They both use a single grounded uniformly
distributed RC line instead of pure capacitors. They have impor-
tant advantages compared to the topologies presented in the litera-
ture which require either pairs of exactly commensurate uniformly
distributed RC ‘lines or other distributed structures of complex

geometry. o . \
Introduction

Much work was done during the 60’s and 70’s on network synthe-
sis using distributed RC elements. Researchers explored many dif-
ferent approaches to compose important classes of impedances and
transfer functions using distributed elements. The developed tech-
niques can be organized into four general classes. I) Exact synthe-

sis of transfer functions rational on the A = tanh(a./s) plane

(Richard’s transformation [1]), or the P = cosh(a Js) plane
(O’Shea’s transformation [2]). II) Exact transfer function synthe-
sis, rational on the s plane using non-uniform or non-grounded or
multi-layer distributed structures [3]-[4]. IIT) Exact transfer func-
tion synthesis rational on the s plane using pairs of uniform
grounded commensurate (with the same time constant) distributed
RCs [5], [7]. IV) Approximate techniques leading to networks
with transfer functions approximately rational on the s plane. The
list of publications given at the end is only partiai, an excellent ref-
erence for works on distributed linear networks techniques is [6].

_ Approaches in the first class are mathematically elegant but lead to
a complex and impractical theory compared to network synthesis
with lumped elements. Techniques in the second class lead to a
large variety of implementations but in general they require types
of distributed elements that may be hard or even impossible to
manufacture. Approximate solutions in the fourth class provide
good results only for low order transfer functions. The third class
and particularly the elegant technique proposed in [5] exploits a
property of pairs of commensurate grounded URCs to implement
arbitrary rational transfer functions. More recently another exact
synthesis technique on the s-plane:was proposed in [7]. A large
variety of basic blocks, integrators and differentiators is introduced
there. All of them are composed of pairs of commensurate
grounded URCs.

- Both of the techniques in [5] and [7] require that the two URCs are
exactly commensurate (have the same time constant). Significant
errors are introduced when this property is not perfectly satisfied.
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To solve this matching problem, two novel integrator topologies
that require only one grounded URC are introduced in this paper.
They are designed according to a new general approach. As it is
shown by the two examples here and is discussed in great detail in
[101, it is possible to achieve a rational transfer function (or other
characteristic) with a single URC, only if it is operated inside a
feedback loop. This is in contrast to the work in [7] where integra-
tors are built as cascades of commensurate URCs. The application
of feedback in the proposed topologies is shown to be equivalent
to the separation of the common - differential modes of operation
of the URC.

1. THE GROUNDED UNIFORMLY DISTRIBUTED
RC LINE (URC)

In this Section we review some properties of the URC that will be
used later for the validation of the two proposed integrators.

A grounded URC is a symmetric two-port linear element charac-
terized by its resistance per unit length R in € /m, its capacitance

per unit length C;, in F/m and its total length L . It is symbolically
represented by the T network of Figure 1.

Figure 1: Grounded URC

The total resistance and the total capacitance of the URC are
definedas R = RyL and C = CyL respectively. Finally, the time

constant T of the URC is defined as,

1 = RyCyL> = RC (1)

and is a measure of the propagation delay from one of its ports to
the other. For frequencies much smaller than 1/7 the URC tends
to behave like a lumped R,C element. Two URCs with time con-
stants 1, , T, are called commensurate if T, = 1,. Pairs of com-
mensurate URCs have been used extensively in earlier studies.

The URC element accepts all two-port descriptions [6]. Here the
impedance matrix is preferred,

I./l = ZO Zm . 11 - (2)
V) Zn Zy| |I



The driving impedance Z, and the transimpedanoé; Z,, of the

URC are given by the expressions:

_ 15 coth(/rs)
Zo(s) = Cs

©)]
Z (s) = Jts- cscth'EQ
m Cs
Although Z, and Z,, are both irrational functions of s, they sat-

isfy the important relation:

Zg__zz R @

m = Cs v
Finally, since the URC is a symmetric two-port, it is equivalent to
the T network of Figure 2. The difference Z,-Z,, is an irrational

function of s as well.

Figure 2: Equivalent T-element

2. GROUNDED—U-IE INTEGRATOR 1

The first integrator topology is shown in Figure 3. The input is
formed by the currents I, and the output is the voltage difference

Vy = V=V, .Ithas an “internal” feedback loop consisting of the

two voltage controlled current sources.
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Figure 3: Proposed integrator I

Iy

As it will be shown in the rest of this section, the transfer function
of the network is given by the expression:

14
Y _gR'1 Q)
I X C s

Since g is a transconductance, the products gR is dimensionless

and (5) represents a current-in, voltage-out integrator of tran-
scapacitance gR/C.

‘We now proceed with a gradual derivation of the above result, in
parallel with a discussion of the principles involved; these princi-
ples have more general value, but are illustrated here using the spe-
cific situation at hand.
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Figure 4: Combination of the cm and dm operations of the URC

2.1 Obtaining Both Open-Circuit and Short-
Circuit URC Port Impedances Simultaneously
from a Single URC.

Consider two URCs, each of length L/2 and current-driven at
port 1. Port 2 is open-circuited in one URC and short-circuited in
the other, as shown in Figure_4(a). Consider now the circuit in
Figure 4(b), in which each URC of Figure 4(a) has been doubled
up. The two URCs on the left are driven symmetrically, whereas
the two URCs on the right are driven antisymmetrically as shown.
It is clear that the responses Vy and V), are the same as the corre-
sponding ones in Figure 4(a). We notice that, in the circuit on the
left in Figure 4(b), the two floating nodes in the middle can be
connected without changing any voltage or current; no current will
flow through this connection due to symmetry. We also notice that,
in the circuit on the right, by superposition, the middle connection
to ground carries no current and can be broken. In both cases, then,
we obtain two URCs of length L/2 each, connected end-to-end.
This results in the situation shown in Figure 4(c), where each
URC has length L . The responses ¥y and ¥y in this figure can be

obtained by direct use of the equivalent T-element in Figure 2 or
equations (2):

Vy = (Zg+Z,)Iy ©)
Vy=(Z4-Z,)]y Y]



Consider now the circuit in Figure 4(d). The responses ¥, and

¥, in this circuit can be obtained by superposing the responses of

the circuits in Figure 4(c): .
V= VytVy/2 ®)
Vy=Vy=Vy/2 . ©

Thus, the cm (common-mode) value (¥, +V,)/2 of V| and ¥,
is Vy, whereas the dm (differential-mode)-value V', -V, is V.
We conclude that the port impedances of the open-circuited and
short-circuited URCs of Figure 4(a) can both be obtained on a
single URC of twice the length, as the cm-to-cm and dm-to-dm
responses, respectively. ’ i
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Figure 5: Composition of integrator I

2.2 Emula.ting Cascade Behavior by Re-Use of

a Single Element
Consider now the cascade circuit in Figure 5(a); this circuit has
been proposed in ref. [7], where it is shown that the behavior from

Iy to Vy is that of an ideal integrator. This figure is the same as
Figure 4(a), with:

The circuit corresponding to Figure 4(c) is shown in Figure 5(b).
Equation (6) still applies, and so does (7) with 7y as in (10). The

transfer function V/Iy of this cascade can be obtained from
these equations as:

v _ ‘
7 = 8(Z3-22) ~oan
X
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Figure 6: Integrator I as a cascade

As it was done above, the two circuits invFigure 5(b) can be com-
bined into a single one, as shown in Figure 5(c). (Notice that in the
current sources *gV,/2, V) is meant to be the voltage so
labelled in Figure 5(b); thus, as far as the circuit in Figure 5(c) is
concerned, these current sources can be viewed as independent
current sources and there is no ambiguity in applying superposi-
tion.) Equations (8) and (9) still apply, with Vy and ¥ the volt-

ages in the circuits of Figure 5(b). The cm and dm values of V|

.and V, are:

v +V, o
= (12)

V-V, = Vy o (13)

Thus, in the two middle current sources in Figure 5(c), ¥ -can be

replaced by (12), i.e. their current can be produced by voltages in
the same circuit, as shown in Figure 3. This is the proposed cir-
cuit; this circuit is still characterized by the above equations, and
its transfer function is given by (11). Combining expressions (11)
and (4) we get: o .

Vy &R '
Y _g&
I, Cs : (14

which is the transfer function of an ideal integrator.

We conclude that the response of the cascade of the two UR_Csﬂ
Figure 5(a) can be obtained as the response of the single-URC
circuit in Figure 3, thus, in a sense, the cascade behavior is emu-
lated here by using a single URC element twice: once with cm
excitation, and once with dm excitation. This element re-use is
such that the two modes are oblivious to each other and do not
interact. This principle is shown in Figure 6.

2.3 Effects of Non idealities on Integrator Per-

formance

Two are the major sources of phase error in Integrator I. First, the
lumped parasitic elements at the ports of the URC. These are
mostly due to the finite input and output impedances of the
transconductors. They can be modeled as grounded parallel R-Cs
connected to each port of the URC as shown in Figure 7.

URC

Figure 7: Lumped parasitic elements introduced
by non ideal transconductors



Second, the variation of the transconductances from their nominal
values. Other sources of error like the additional dynamics of the
transconductances and low non-uniformity of the URC seem to be
of secondary importance. All these phase error sources are com-
mon in all techniques using distributed elements. The advantage
here is that there in no need for commensurate URCs. As it was
demonstrated in [7], construction requiring pairs of commensurate
URCs is extremely sensitive to mismatches.

HSPICE was used to compute the total phase error of Integrator L
The URC was implemented as a MOSFET in the triode region
“with R implemented by its channel, C implemented by the chan-
nel capacitance, and operated with small signals to keep nonlinear-
ities low. The sizes of the transistor were W/L = 100/3 which
corresponded to a total resistance of R = 33 KQ and total capac-
itance of C =3 pF. For the parasitics, R; = 1 MQ,

R, = 1MQ, C, = 6 fF and C; = 6 fF were used. The gain

g was 160 pA/V. All the parasitics and transconductances
(including the strengths of the input and output current sources)
were assumed independent Gaussian random variables with vari-

ance of 5% and 0.5% of their nominal values respectively. Simu-
lations have shown an expected phase variation of about 12.3
degrees over the 2 decades of best performance. An extensive the-

oretical phase error analysis is available in [10].
3. GROUNDED-URC INTEGRATOR II

In the second integrator topology, the input is formed by currents
I, that flow antisymmetrically into the two ports of the URC. The

feedback loop is realized by the two “internal” voltage dependent
current sources that drive the URC symmetrically.

- =V

out
A

L
Vi Y

MWW '
Iy §(V1—V2)? ‘ ?ﬁw.—m Iy

Figure 8: Proposed integrator I

The transfer function of the network is the same with that of inte-
grator I given by equation (14). A decomposition of Integrator II
into modes of operation is summarized in Figure 9. Here, the dif-
ferential mode comes first and the common mode follows. The
behavior of Integrator II with respect to phase errors due to para-
sitic elements and transconductance variation is similar to that of
integrator I [10].

The main difference between the two integrators appears in their
steady state behavior with zero input 7, . Integrator I requires that

the voltage controlled current sources provide current to the URC
in order to maintain the output voltage ¥,. On the contrary, when
integrator II is in steady state with /,, = 0,itis ¥, - ¥, = 0 and
5o no current flows into the URC.
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Figure 9: Integrator II as a cascade

4. CONCLUSIONS

Two novel integrator topologies using a single grounded URC
have been proposed. What makes a single URC sufficient for
achieving rational transfer function (integration) is the use of inter-
nal feedback that exploits the common and differential modes of
operation of the device. The topologies have advantages in com-
parison to previously proposed architectures that require exactly
matched URCs (commensurate) or other more complicated distrib-
uted structures. Compared to integrators with ideal capacitors, the
two topologies may have an area advantage since the MOS capaci-
tance density is 20-30 times higher than that of the ideal metal to
metal (lumped) thin-oxide capacitors commonly available in digi-
tal VLSI processes. However, further work will be needed to
address the effect of nonlinearities and to find ways to reduce the
latter.
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