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Abstract,. In this paper we study the delay associated with 
transmission of data through busses. Previous work in this 
area has presented models for delay assuming a distributed 
wire mqdel or' a lumped capacitive coupling between wires. I n  
this pape7weextend-the Elmore delay to  account for a distrib- 
uted model with distributed coupling component and an arbi- 
trary number of lines driven by independent sources. The 
effect of data patterns is taken into account allowing us to esti- 
mate the delay on a sample by sample basis instead of making 
a worst case assumption. 

Using this detailed wire delay model, we propose a technique to 
speed up the communication through a data bus using coding. 
The idea is to encode the data being transmitted through the 
bus with the goal of eliminating certain types of transitions 
that require a large delay. WL show that by using proper 
encoding techniques, the bus can be sped u p  by a factor of 2. 

1. INTRODUCTtON 
Although the literature on delay estimation is quite abundant, the 
interaction patterns of multiple, capacitively coupled and indepen- 
dently driven lines have not been studied. Sakurai et.al. in [7] and 
[8] present an excellent analysis of the case of a single line and of a 
pair of lines. Interesting results are also available in [3] by Hendel, 
in [5] and [6] by Kahng et.al. McCormick and Allen in [4] also 
refer to the case of coupled lines. 

In this paper the case of a general bus with m lines is examined. 
Instead of referring to the notions of the aggressor line, the victim 
line or the noise introduced, we try to answer the following ques- 
tion: 

a =  Given the set of present data in the bus U* = [U:, ..., U,,,] 

(Figure I )  and the next set of data uN = [U, , . . ., u t ] T ,  how much 

delay does the k-th line, k = 1, 2,  ..., m experience? 

In this way, the delay in the k-th line is a function Tk(uo, u N )  of--', 

the vectors U" and U . This approach allows a classification of 
the, old state - new state, pattems based on the delay functions. 
Furthermore, this classification leads to the design of coding 
schemes that can accelerate the data trasmission through the bus. 

2. DELAY ESTIMATION FOR BUSSES 
In this section we present an electrical model for submicron bus- 
ses. Based on this model we approximate the delay function 
loosely introduced above. 
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2.1 Coupled Bus Lines and Drivers 
Figure 1 shows a model for the drivers and busses in submicron 
technologies. The lines are assumed capacitively coupled (distrjb- 
uted R-C). cL is the parasitic capacitance per unit length between 

each line and ground, and cI  is the interwire capacitance per unit 

length between adjacent lines. r is the distributed series resistance 
of the lines per unit length. The drivers are modeled as voltage 

sources ui with series resistances +d . 

Vdd Driver2 , Line2 

Figure 1 : Lines and Drivers 

2.2 Elmore Delay of Coupled Lines and Multi- 
ple sources 
A commonly used approximate measure of the delay of the propa- 
gation of a step excitation through a linear system is the Elmore 
delay [9]. For a system H ( s )  driven by a step input U([) and pro- 
ducing an output y (  f )  the delay T is formally defined as the solu- 
tion of the equation, 

00 

0 

For the definition to be physically meaningful y ( t )  has to be 
increasing and its limit for t + 00 must exist. Elmore delay is used 
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as a delay metric even in cases where the monotonicity condition 
doesn't hold. Assuming that y(-) exists and it is different than 
y(0) , equation ( I )  implies that, 

m 

0 

or in the Laplace domain, 

(3) 

Normalizing the supply voltage, V,, = 1 , equation (3) becomes, 

T = -[y(m)-y(O)I y Y ( S ) I  (4) d l  s = 0 

In the case of the data bus there is more than one source exciting 
the network simultaneously. Moreover, since the data is random, 
the pattem of the driving voltages can be arbitray. This introduces 
the need for a more generalized definition of the delay. 

To simplify the situation we assume that the source voltages in 
Figure 1 are steps of the form, 

drivers. The equivalent network of the bus in Figure 1 satisfies the 
following system of partial differential equations, 

for all I 2  0 and x E [0, L ]  . The capacitance matrix C corre- 
sponding to the capacitive coupling in the network (Figure 1) is,: 

where h = 2 . The resistance matrix R is R ,= 
C L  

' 10 0 ... rj 
J The network of the lines satisfies thelnitial Condition, 

V ( x ,  0+) = ,U (10) 
( 5 )  

for all x E ( 0 ,  L ) ,  where U' ..., u : ] ~ ,  and the Boundary 
Condirions. 

N where U:, uk E (0, 1 )  for all k = I ,  ..., m .  Now let 

V ( x ,  t )  = [V,(x, I )  ,..., V m ( x ,  t ) l T  be the voltages of the lines at 
v(o, I )  + R, . I ( O ,  r )  = uN (11) 

and 
time r and at distance x E [O, L ]  from the drivers, where L is the 
physical length of the lines. Then for the voltages at the ends of the I ( L , t )  = 0 (12) 

lines we have that, V k ( L ,  0) = U :  and in the limit as t + 00, 

V k ( L ,  m )  = U : .  Since the lines of the bus are electrically cou- 
pled, the delay at every line is a function of the initial and the final for all t > O ,  R,  = where ii is the output resis- 

. .  . .  
conditions U' = [U)', ..., U:]' and uN = [U:, ..., U:]' respec- i 

tively. We define the delay function of thek-rh line as, 
tance of the i-rh driver. 

Let V ( x ,  s) and I ( x ,  s) be the Laplace transforms of V ( X ,  t )  and 
Tk : ( 0 , l  I" x (0 , l ) "  + [O, -) (6)  

such that, , / j ( x ,  t )  with respect to the time variable. Then, from (8) we have, 

We set 2.3 Calculation of the Delay Functions 
As mentioned before, the lines of the bus are assumed distkbuted 
with uniformly distributed parasitic series resistance/'per unit 
length r , capacitance to ground per unit length cL  and interwire 

/ 

H ( s )  = [ -7 --c - c s  0 

a?d use (13), (10) and (14) to get, /' parasitic capacitance per unit length c,. 

Now let I ( x ,  t )  = [Il(x, t )  ,..., I m ( x ,  I ) ]  T /  bejhe currents running q. 

/ 

through the lines at time t and at distance X E  [ O , L ]  from the 
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In the Laplace domain the boundary conditions ( 1  1) and (12) 
become, 

and 

(17) 

be the 2m x 2m matrix exponential associated with 

I ( L , s )  = 0 

Let L 

equation (15). From the definition of the exponential we have, 

k = O  

We can decompose the exponential into m X m blocks as, 

where a, b, y, 6 are analytic matrix functions of the form. 

L2 a(s )  = I +  -RCs + O(s 

L3 

2 

b(s )  = - LR - -RCRs + 0 ( s 2 )  3 !  

2 J  

L2 6 ( ~ )  = I +  -CRs+ O(s ) 
2 

Equations (15) form a system of first order linear differential equa- 
tions with constant coefficients, so their solution ([I]) evaluated at 
x = L is given by, 

[!::;1;1= e ~ ( ~ ~ ) ~ ~ { [ ~ ~ ~ ~ ~ ] +  * ( s ) - ~ [ ~ o ~ . ] i -  

(21) 
- H ( s ) - ' [  O 3 

c.uu 
Note that for s f 0 the matrix H ( s )  is invertible and we have that, 

( H ( s ) ) - ]  = -.'nc-] (22) 

Now using (14) and (19), equation (21) simplifies to, 

From (16), (17) and (23) we have equation (24) 

t [""I (23) 

1 

which implies that, 

which through (20) implies, 

We define the total resistance and capacitance matrices of the cir- 
cuit as, 

R T = R d +  L 5 . R  

C , = L . C  

Then from (7), (26) and (27), it is, 

T .  where, ek I S  the row vector with 1 in the i-rh coordinate and 0 
everywhere else. Equation (28) can also be written in the vector 
form, 

N N T(uo,u  ) = d iag(u  - u U ) . R T . C T . ( u N - u " )  (29) 

If we make the assumption that the output resistances of all the 
drivers are the same and independent of their logical outputs, i.e. 

r: = rd for every i = 1, ..., m , then (29) is simplified to, 

T ( u  U N  , U  ) = d iag(u  N - u u ) . C T . ( u N - u u ) . r T  

where rT = rd + L 5 r . Finally, note that in this case, the sum of 

(30) 

the delays in the bus is given by the quadratic form: 

m 

N N T  Tk(u o , U  N ) = (U -U") .CT.(u - u o ) . r T  (31) 
k =  1 

The results were verified with Hspice. The numbers 

0.69 x Tk(uu, u ) were within 16% accuracy of the measured 

50% propagation delays of the waveforms Vk(L,  t )  . 

N 
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3. DELAY AND ENERGY: A RELATION 
From ref. [2] we know that the energy drawn from Vdd during the 

transition U" + uN is given by the non-symmetric quadratic form, 

(32) 

The total energy stored in the capacitances of the lines before the 

U N  N T  N 
E,,(u , U  ) = (U ) .CT.(U -U") 

1' 

1 '  
2 

transition is given by, Ec(uu)  = - . (U') .C,.(u") and after the 

transition the transition by, Ec(u N ) = - 1 . ( U  N T  ) .CT.(u N ) .  The 
2 

N energy Elr(u", U ) drawn from Vdd must equal the change in the 

energy stored in the capacitances plus the energy ER(uo, u N )  that 

is dissipated into heat on the resistances. Therefore, 

ER(U<', U N )  = E&(', U N )-{&(U N ) -Ec(Uf ' )}  

E,(u , U  ) = -'(U -U") . C T . ( U N - U 0 )  

(33) 

From (33) we have that, 

(34) 

Comparing (31) with (34), we get the following relation between 
the dissipated energy and the sum of the delays, 

U N  1 N 
2 

0 

0 

m 

t 
1' 

k =  1 

(35) can be written as, 

u 

1 0 

t 0 

0 

k =  I 

and so, 

t (35) 1 11 0 

Average Delay p e r  Line = 
2*rT ' Average Dissipated Energy p e r  Line 

1 
1 

4. PROPERTIES OF THE DELAY FUNCTIONS 
Following the assumption about the resistances of the drivers, 
equation (30) can be written more explicitly as, 

0 

0 t 

( 1  + L)A:-XA,A, , k = l  

( 1  + ~ ? L ) A ~ - ~ A ~ ( A ~ - ~  + A k + , ) ,  1 < k < m  I T&u" U N )  -- - 
' T .  CL 

1' 

where Ak is the change of the voltage of the k-rh line, i.e. 

Ak = uk - U k  and C, = L cL is the total capacitance between a N o  

t t 1 U 

line and the ground. Since U:, U: E { 0, 1 } , it is A, E {-1, 0, 1 } . 
Table 1 shows the delay in the k-th line as a function of 
Ak- l ,Ak a n d A k + l ,  where k = 2 , 3  ,..., m - I .  We use the 

upward arrow 1' for the case Ai = I , the downward arrow when 

Ai = -1 and "-" when A; = 0 .  The possible normalized delay 

values of an intermediate line are, 0 ,  1 , 1 + A ,  1 + 2 h ,  1 + 31 
and 1 + 4 h .  Each of these values corresponds to a set of transi- 

N N N  
tions 1, 11 r U k -  1 7  U k >  u k +  11 

1 

line k 

1 1 1 

T t l + h  

t 
1 
t 
1 

1 1 + 3 h  
~~~ 

T 1 + 3 h  

1 T i + 4 a  

,r 1 1 + 4 h  

Table 1 :  The Delay Function of Intermediate Lines 
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For the boundary lines I and m we have Table 2. (lines 1.2 can be 
replaced by m, m-I respectively). 

t 

example if only transitions of the classes Do,, D o ,  D,  , D, were 

allowed, then inequality (38) could be replaced by inequality (39). 

L I I  1 + 2 h  

‘ T .  C L  

line 1 

1 P I I  1 + 2 h  

Here the possible values of the normalized delays are, 0 ,  I ,  
1 + h , and 1 + 2 h .  Each of these values corresponds to a set of 

transitions [U;, U;] + [ u l ,  u 2 ] ,  (or [U:, U : - ~ J  -+ N N  

We define the following classes D,, D o ,  D,  , D , ,  D ,  and D,  

of transition patterns, u* + uN as, 

all (uo, uN)  such that ____ - 

- 1 + r h  
Tk(uo, uN) 

all  (U*, uN) such that ____ - 
‘ T .  ‘ L  

r = 0, 1,2,  3,4 

For example, if the bus has only 3 lines, i.e. U*, uN E { 0, 1 j 3  we 
have the delay pattern of Table 3. 

5. CODING FOR SPEED 
In the traditional operation of data busses, the clock period T, is 
sufficiently large so that all the transitions in the bus have enough 
time to be completed. In other words it must be that, 

T c 2 ~ . ( l  +4h)  (38) 

where q is a technology parameter. 

The analysis above suggests that we could use a smaller T,, i.e. 
speed up the bus, if we could avoid time-expensive transitions. For 

I I I I I I I I I I 

Table 3: Delay Classes in { 0, 1 j3  

T c r q .  (1  +2h)  (39) 

This means that for large values of h the speed of the bus can 
almost double. Of course, by not allowing some transitions we 
automatically reduce the rate of information through the bus. 

Here is a concrete example. Suppose for simplicity that the bus has 
m = 4 lines and let TR2 be the set of all transitions that have 
(normalized) delay 0 ,  1 , 1 + h or 1 + 2h.  By definition, it is 

TR2 = D,yD,uD,  v D 2 .  TR2 is shown in Table 4 where 

the dots stand for the allowed transitions and the x’s for the forbid- 
den ones. 

N 
U 

Table 4: TR2 for 4-bit bus 
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Although TR2 does not have any regular pattem, all the possible 
transitions are allowed among the states 0,1,3,6,7,8,9,12,14 and 
15. If the set of states is reduced to (0, 1 , 3 , 6 , 7 , 8 , 9 ,  12, 14, IS} 
then the worst case delay is only 1 + 2 h .  In this case, the number 
of bits that can be transmitted each time is decreased from four to 
log,(lO) which is about 3.3 bits. Also the speed has been 

increased by a factor of - + 4 h  . This ratio is about 1.85 in 0 . 1 8 ~  

technology. On the other hand, the number of bits per transition 

has been decreased by a factor of - = 1.21 .So the net result is 

about 1.53 times the initial data rate. The encoder and decoder 
needed for this example are very simple static maps. 

Now, if the set of states is further reduced to 
(0, 1,6, 7, 8, 9, 14, 1 5 } ,  then exactly 3 bits per transition (an 
integer number of bits) are possible. This makes the encoding - 
decoding scheme trivial and the net result is about 1.4 times the 
initial data rate. 

1 +2h 

4 
3.3 

bo - 
b,  - 
b2 - 

-bo 

Encoder , Decoder - b ~  

-b2 

Figure 2: Coding for Speed, an 
Example 

6. CONCLUSIONS 
The functions of the delays of the signals in the lines of general 
busses were estimated. The properties of these functions were 
studied and the interaction patterns among the lines causing delay 
were revealed. This allowed a classification of the data transitions 
according to the time they need to take place. Finally, the possibil- 
ity of coding for speed was presented through an example. 
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