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Abstract 
The energy dissipation associated with driving long wires 
accounts for a significant fraction of the overall system energy. 
This is particularly the case with the increasing importance of 
the inter-wire parasitic capacitance in deep sub-micron technol- 
ogy. A closed form solution for estimating the energy dissipa- 
tion of a data bus is presented that uses an elaborate parasitic 
wire model. This includes the distributed RLC effects of wires 
as well as the coupling between wires. We also propose a gen- 
eral class of coding techniques to reduce energy dissipation for 
data transmission by trading-off between computation and com- 
munication costs. An algorithm is presented to design efficient 
coding strategies to minimize energy. When the effects of inter- 
wire capacitance are taken into account, the best coding strategy 
is not to simply minimize transitions - an approach followed by 
previous research. Instead, Transition Pattern Coding (TPC) 
modifies the transition profile to minimize energy, and in many 
cases higher transition activity can result in lower energy. 
Results show that up to a factor of 2 reduction in energy. 

1. Introduction 
As technology scales to the deep sub-micron dimensions, the 
energy cost of performing computation continues to reduce 
while the cost of on-chip communication is not improving. Over 
the past several years, significant emphasis has been placed on 
reducing the energy dissipation associated with communication. 
Numerous schemes have been presented for reducing energy 
associated with driving wires including low swing signaling, 
charge re-cycling and data coding [ 1][2][3][4]. These techniques 
have assumed a simplistic lumped model for the wires. 

One effective coding technique to reduce switching energy 
under the lumped model is the bus-invert technique in which the 
data bus is conditionally inverted to reduce the overall transi- 
tions [4]. If more than 50% of the bits change, the entire bus is 
inverted. Therefore,. in addition to the data, an extra bit must be 
transmitted to indicate if the bus is inverted. Several such coding 
techniques have been proposed to reduce bus activity using a 
lumped wire model without any inter-wire effects. 

In this paper, we address a fundamentally different problem: the 
minimization of communication energy dissipation when the 
distributed and coupling effects of wires are considered. We 
propose here a comprehensive approach for evaluating the bus 
energy dissipation by assuming a coupled transmission line wire 
model. Using this model we conclude that minimizing the aver- 
age numbers of transitions (i.e., the bus activity) is not necessar- 
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ily the best approach for reducing energy. We observe that 
certain transitions are favored when energy is to be minimized. 
Based on this, we developed an algorithm to tailor the transition 
profile over the data bus to minimize communication energy. 

2. Energy Model with Interwire Parasitics 
In this section we analyze the power consumption of the bus dur- 
ing a transition. We do this by taking into account the distributed 
nature of the lines and the interwire parasitic capacitances. We 
assume the following model for the lines and their drivers. For 
simplicity we first present the case of a two lines bus and later 
we give formulas for the general case. 
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Figure 1: Lines and Drivers 

Figure 1 shows the coupled transmission lines wire model. In 
this figure, r is the series resistance per unit length of the lines, 
cL is the capacitance to ground per unit length and CI is the inter- 
wire capacitance per unit length (between adjacent lines). Let <, be the initial voltages across the lines in Figure 1 
(0 or v d d )  and let (, < be the final voltages after the transi- 
tion. We assume that from one transition to the next one there is 
enough time for the voltages of the lines to settle. We define the 
lambda ratio, h=c, /cL which is technology dependent. Let Lp 
be the physical length of the lines, then C, = L p . c L  and 

C, = L p .  c,  are the total capacitances to ground and between 
wires, respectively. For the rest of the paper we set C, = 1 and 
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Vdd = 1 in order to simplify the notation. To get the actual 
(physical) energy from the formulas below one should multiply 
the results by C,. &. Table 1 shows the energy consumed by 

the drivers during the transition [ (, <] + [ $,4] for the two 
lines bus of Figure 1 [5 ] .  
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Figure 2: The general class of Coding 

Schemes 
receiver during the same period k it is fed into the encoder. 

Note that the "original" data bus with m lines has now been 
expanded to a bus of m+a lines. We denote the logical values of 
these m+a lines by the vector L ( k )  . The vector L ( k )  is restricted 

to lay within the subset W = {wl,  w2, ..., wM} of (0, 1)"" and 
we call the M elements of W ,  the codewords of the coding 

scheme. F and G are functions of the form, F : W x { 0, 1 }" + W 

and G : W x W + { 0 , l ) "  .The decoder always recovers the orig- 
inal data i.e. D(k)  = D ( k )  if and only if the following condition 
holds, 

G(w, F(w, d ) )  = d , Vd E (0, 1 }", Vw E W (3) 
Relation (3) implies that for every fixed w E W the mapping, 
d + F(w, d) is injective. Even more, for every w the set 

X, = {F(w, d )  : d E (0, 1 }"} that contains all the possible val- 

ues of L ( k )  , given that L(k - 1) = w , has exactly 2" elements. 

We define the M x  M transition matrix T = [ t ; ,  j ]z = , corre- 
sponding to the function F as, 

1 if W j E  xw, 

Matrix T has exactly 2" ones in every one of its rows. We 
define the transition graph G, which carries exactly the same 
information with the transition matrix as. 

G, = {(w, F(w, d ) )  : w E W, d E (0, (4) 

Relation (3) defines the restriction of the function G in the tran- 
sition graph. The values of G in the set W x  W- G, are immate- 
rial and can be chosen in a convenient way to simplify the 
hardware implementation of the function. G, has M x 2m ele- 
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ments. If the transition graph G, has more than one strongly 
connected component [6], the coding scheme is degenerate in 
the sense that some of the codewords are not utilized. From now 
on we assume that G, is strongly connected. Strong connectiv- 
ity of G, is equivalent to the irreducibility of the transition 
matrix T ([7],[8]), a property that will be used later. 

2.2 A Motivational Example 
Here is a simple TPC (transition pattern coding) where m = 2 ,  
m + a  = 3 ,  M = 6 ,  W = {wl,w2, ..., w6} and 

w1 = 000 

w4 = 101 

w2 = 001 

w5 = 110 

w3 = 010 

W6 = 111 

The function F is given by the following diagram, 
tdata D(k) to be. sent 

1; : ::; :1- and so the transition matrix is, T = 

In this example, TPC favors transition patterns in which the volt- 
ages of neighboring bus lines change values in the same direc- 
tion. This reduces the effective capacitance between adjacent 
wires. For a . 1 8 p  technology and minimum distance between 
the wires, the value of 1 is about 3.2 and the energy saving of 
this coding scheme is about 17.9% even though the number of 
the bus lines has increased. This should not be surprising. In 
general the scheme encodes the information D ( k )  into transi- 
tions among codewords that cost less in average than the transi- 
tions between original data. 

The following issues regarding TPC are presented in order in the 
next sections : Exact calculation of the energy consumption, 
design of coding schemes, complexity reduction. 

2.3 Energy Consumption Using TPC 
The energy consumption is related to the transition patterns 

among the codewords. Let { D ( k )  = ( d l ( k ) ,  d2(k),  ..., d, (k) )  }k 

be the input data sequence. We make the common assumption 
that the random variables d j (k ) ,  j=1, ..., m , k=1,2 ,... are inde- 

T 

pendent and uniformly distributed in { 0, 1 } This implies that the 
stochastic process L ( k )  (see Figure2) is first order homoge- 
neous Markov process [7] and the conditional probability for 
every possible transition among the codeword wi+wj is 

1 P,(L(k) = W. I L ( k -  1)  = wi) = - . The Probability Transition 
2m J 

matrix P of the coding block is defined as 

P= M = [P,(L(R) = wj I L ( k -  1)  = 1 - I t  is, 

~ 
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We define the probability (row) vector p ( k )  of the stochastic 

From the Chapman- Kolmogorov formula it is p ( k )  = p ( 0 )  . Pk 
[7], where p ( 0 )  is the probability distribution of the initial state. 
The energy cost associated with a transition wi + wj is denoted 
by C,(wi, wj) . From Equation 1 we have that, 

Where the bits of the codewords L ( k )  are assumed to be zero or 
one in the field of real numbers and not in the Boolean algebra. 
We call the matrix c = [c,(wi, wj)l: = the Cost Matrix of the 
scheme. We define the Time Averaged Expected Energy con- 
sumption (TAEE) per transition of the bus E,, as the limit of the 
average expected energy consumption during N consecutive 
transitions when N goes to infinity. 

N 

(7) 
1 

N+- N 
E, = lim - .  c E[C,(L(k- I), L ( k ) ) l  

t =  I 

To get a compact expression for the TAEE we start from the 

relation E [ C , ( L ( k -  l),L(k))] = P b j . p i ( k -  l).C,(wi,wj) 

where p i ( k )  is the i-rh entrance of the probability vector p ( k )  

and Pi, the i j- th element of the transition probability matrix P . 
For matrices A,B of the same dimensions, ' let 
A B = [ai, j .  bi, j]i, be 
the (column) vector with all coordinates 1. Using the Chapman- 
Kolmogorov equations [7] we get, 

M 

i , j =  1 

be their Hadamard product and let 

E[C,(L(k-l),L(k))] = p(O).Pk-'.(P*C), - 1 (8) 

Now recall our assumption of the strong connectivity of the tran- 
sition graph G, or equivalently the irreducibility of the transi- 
tion probability matrix P .  Even more P is a row stochastic 
matrix by definition. We need the following modified version of 
the Perron-Frobineous theorem. (corollary 8.4.6 in [8]). 

Theorem 1 (Perron-Frobineous) 
An irreducible row stochastic matrix P is always similar to a 
matrix of the form, 



(9) 

where J is a matrix in Jordan form with eigenvalues of modulus 
less than one and AI is the following diagonal matrix. 

21ti $J 2 ( q - l ) c i  

AI = Diag 1 , e 4 , e q  ,..., e ] (10) [ -  
q, is the number of eigenvalues of P of modulus one and is 
always equal or greater than one. 

Definition 7, relations (5),(8) and the Perron-Frobineous theo- 
rem lead to the following formula for the Time Averaged 
Expected Energy, 

Ea = L . b T . ( T * C ) . l  (11) 
2m 

b is the left eigenvector of matrix P corresponding to eigenvalue 
one i.e. b . P = b (or equivalently b . T = 2". b ) and satis- 

fying b T .  1 = 1 .  

2.4 Algorithm for Deriving Coding Schemes 
An algorithm for deriving efficient coding schemes is presented 
in this section. Given the parameters m ,a (see Figure 2) and h 
the algorithm targets to the coding scheme with the lowest 
energy cost (TAEE). It searches among coding schemes with 
W = (0, and M = 2 m + a .  Although it is heuristic, the 
algorithm gives Transition Pattern Coding schemes with signifi- 
cant energy savings. 

The intuition behind its recursion is that if T(k) = T for all iter- 

ations, then the entry 'pi,  of the matrix CP = ['pi, j ~ C  = at the k- 
rh iteration equals the expected cost of a sequence of k transi- 
tions starting with wi + wj . Even more, ti at the k-rh iteration is 
the expected cost of a sequence of k transitions starting from 
state w i .  In every iteration the value of matrix T = T ( k )  is 
selected such that the values of 5; for all i = 1 ,  ..., M are mini- 
mized. 

T T T T 

- -  

Begin 

M:= 2 m + a  

N =  2m 

w= (wl, ..., wM}: = (0, l }  

c:= [C , (Wi ,  wj)li,j = 1 

!= (&, ..., tM)T: = (0,O ,..., 0lT 

m + a  

M 

For k = 1 to 2M do 
T o:= C + l . C  - 

For i = 1 t o M  do 

find 1 2 j 1 < j 2 <  ... < j N . S M  such that 
N N 

For i = 1 toM do 

1 if P E  c j l , j 2 ,  ..., j N }  

0 otherwise 
ti$:= 

End 
N 

r =  1 

End 
N T(k):= [t;, j l ; , j  = 1 

End 
End 

2.5 Results of the Algorithm 
For h varying from 0 to 10 ,  m = 2,3,4,5 and some values of 
a from 1 to 5, a TPC coding scheme was derived using the 
algorithm above. Its energy saving was calculated (exactly) and 
compared with that of the Bus Invert coding scheme. The results 
are shown in Figure 4. 

h h 

I I 1 

5 5 10 

h h 
Figure 4: Energy Savings of TPC and Bus Invert 

Generally the efficiency of the T.P.C. increases with h . It can 
become more than 50% as h approaches infinity. The typical 
values of A for .18pm technology and minimal distances 
between the wires are higher than 3. 

2.6 Coping With Complexity 
A way to reduce complexity is to split the data bits into groups 
and then encode each group independently of the others. The 
approach is shown below. 

325 



L ( k )  : Bus 

01 

10 

. .  
d 

I Encoder Decoder : 
1 1 

- + CI - 
Decoder : 

2 : Encoder 
2 

0 0 O h h O  
0 0 21 0 

0 2h 0 0 

1 1 O h h O  

Figure 5: Partitioned Coding Scheme: 
A juxtaposition of simpler blocks 

The energy dissipation in the partitioned coding scheme equals 
the sum of the energy dissipations of the individual blocks plus 
the energy losses due to the interactions between the adjacent 
blocks. This interactions take place between the last line of the 
1st block and the first line of the 2nd block, the last line of the 
2nd block and the first line of the 3rd etc. The calculation of the 
expected energy dissipation caused by the interactions is pre- 
sented in the next section. 

2.7 The Interaction Energy 
The energy loss caused by the interaction of two consecutive 
blocks corresponds to the h 's of Table 1 if VI, V2 correspond to 
the touching boundary lines of the two blocks. For simplicity, all 
coding blocks are assumed similar with parameters 
m,a,wM,EG as defined in Section 2.1. Let L ( k )  and L'(k) be 
the codewords of two consecutive coding blocks B and B' . S u p  
pose B is above B' (see Figure 5).  Let I ( k )  be the last (bottom) 
bit of L ( k )  and I'(k) be thefirst (top) bit of L ' ( k ) .  So Z(k) and 
l'(k) correspond to adjacent lines in the bus. From Table 1 we 
extract the Table 2 for the interaction energy at time k. Call this 
energy cost, J ( k )  c 1 0 0 1 0 1  I 1 0 1  11 I 

Table 2: Energy Loss caused by Interaction 

The random variables Z(k) and I ' (k)  are independent (because 
the data bits are independent) and the expected value of J ( k )  is 
given, after some minor manipulation, by, 

E[J(k)I = 

a.P,(i(k + 1) = 0) . ~ , ( r ( k )  = 0, ~ ' ( k  + 1) = 1 

+ h . P , ( l ( k ) =  1,Z(k+1)=0)'Pr(I'(k+1)= 1 )  

+ h . P , ( Z ( k ) = O , l ( k + l )  = l ) . P , ( l ' ( k + I ) = O )  
+ h.P,(Z(k + 1) = 1). Pr(Z'(k) = 1, l'(k + 1) = 0) 

(12) 

~ 
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Let WO, and W,, be the subsets of W containing all codewords 

whosejirst bit is 0 and 1 respectively. Similarly let W,o and 
W,, be the subsets of W containing all codewords whose last bit 

is 0 and 1 respectively. Then, for any a, p in ( 0 , l )  it is, 

P,( l (k)  =a, I (k+  1 )  = p) = 

= P,(L(k)  = v , L ( k +  1) = w) 

P,(L(k + 1) = w I L ( k )  = v).P,(L(k) = v) 

v E w., 7 w E W.p 

= c 
Y E  w.,,wa W.p 

Similarly it is, P,( 1'( k) = a, 1'( k + 1 ) = p) = 

c P,(L'(k + 1) = w 1 L'(k) = v) . P,(L'(k) = v) 
Y E  W,,W€ W& 

To get a compact expression for E[J(k ) ]  we need a few more 
definitions. For a = 0,l  and i = 1, ..., M let, 

; 1 if w i e  W ,  

h , = {  0 if w i e  W,, 
, 

1 if W;E W,, 

0 if w i g  W,, 
hf, = { 

We define the four diagonal matrices, 

1 M H,, = diag(h,, , h:, , ..., ha*) 
Then, using the above definitions we can write that, 

P,(Z(k) = a, Z(k + 1) = p) = p ( k ) .  H,,.P. Hla.! (13) 

P,(I'(k)=a,I'(k+l) = P )  = p(k).H,,.P.Hp,.! (14) 

and that, 

P,(Z(k + 1) = a) = p ( k  + 1) . Ha,.! (15) 

P,(Z'(k+l)=a) = p(k+l).H,.i (16) 

Combining Equations (12)-( 16) and using the Chapman- Kol- 
mogorov formula [7] we get expression (17) for the expected 
value of the interaction energy. 

E[J(k)l = 

= h .  [ p ( O ) .  Pk+' .H,o.!]. [ p ( O ) .  p k .  H, . P. HI,-!] 

+ h.[p(0)-Pk+' .H1,.!]-[p(0).Pk.H,l.P.H,O.!l 

+ h .  [ p ( O ) .  Pk+l  .Hal.!]. [ p ( O ) .  P k .  H,o. P. H,,.!] 

+ h . [p(O)  . pk' . H, 1. 1 3  . [p(O)  . pk . HI, . P. H, *!I 

(17) 

We define the Time Averaged Expected Energy Consumption due 
to Interaction (TAEEI) as, 



N 

(18) 
1 Eui = l i m  E[J (k ) ]  

N+- 
k =  1 

From theorem 1 the matrix P can be written in the form, 

P = A . A . B  (19) 
Where A is as in theorem 1, A = [ 1 ,  a ] ,  ..., aM- consists of 
the (right) eigenvectors of P appropriately ordered and 

B = [bo, ..., b,- , ]  is the inverse ofA. Using (19) we get that, T 

r =  1 

Where 6 is the conjugate vector of b and q is given in theorem 
1. In the (most common) case q = 1 , formula (20) simplifies to, 

(21) 
h T  
2m E . = -.bo . [ H 1 * - T - H h  + H , l . T * H , o ] . l  

2.8 Total Energy Consumption of the Partitioned 
Coding Scheme 
Having formulas for the Rme Averaged Expected Energy con- 
sumption of the individual coding blocks and also formulas the 
Zme Averaged Expected Energy consumption due to Interaction 
between the blocks, the Total Time Averaged Expected Energy 
consumption (TTAEE) of the whole coding scheme in Figure 5 
is given by (22). 

E ,  = n . E , + ( n - 1 ) . E O i  (22) 

where n is the number of blocks. For the case q = 1 we have, 

Note that this energy is normalized with respect to Vdd and C,, 

so the actual energy consumed is <d x C, x ET.  

Figure6 presents the energy saving of the TPC given by the 
algorithm for some combinations of the parameters, number of 
blocks n, data lines m, bus lines m+a, lambda h . 
3. Conclusions 
Minimizing transition activity is not necessarily the best 
approach to reduce energy dissipation when the effect of inter- 
wire capacitance is significant. An accurate energy model has 
enabled the development of efficient Transition Pattern Coding 
strategies using an elaborate distributed model for the wires. An 
efficient heuristic algorithm was developed to design the coding 
strategies. The overall energy dissipation can be reduced by a 
factor of 2. 
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