ICECS' 97, December 15-18, 1997, Cairo, EGYPT

A Fast Algorithm for the Eigenvalues

Computation of a Toeplitz Matrix
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_;_tract: This paper . is .concerned with the
Zomputation of the eigenvalues of a real,

salgorithm is described which is based on the
bisection method and on the Durbin algorithm. -
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I. INTRODUCTION

ihe problem of determining the eigenvalues and
€lgenvectors of a given matrix is, in general,

tne of exceptional difficulty. A large number -

of varicus algorithms, each applicable to a
farticular class of matrices, have been
d%veloped for this purpose. All  these
#lgorithms are _basec on the iteration .of
Wrious procedures. itxcellent surveys of the
Wrious algorithms car be found in [1] and (2].

iSymmetric Toeplitz matrix. A very efficient-

Prof. Nikos E.Mastorakis,
Hellenic Naval Academy,
Chair of Computer Science,
Terma Hatzikyriakou, 18539,
Piraeus, GREECE.
email:mastor@softlab.ntua.gr
Fax: +301 4181768

A new idea for the computation of the minimum
eigenvalue M (R) of a positevely definite

I_‘gfplitz matrix R is the following (3], [4].

Consider the matrix R-Al . We have A<\ (R},

if and only if R-AI>0, as well as, A;}::“{R).
if and only if R-Al- has at least one negative
eigenvalue. Therefore, if one could find a-
criterion for the positivity of R-AI>0, one
could find a criterion for checking if
Ax (R). If the given ‘matrix is Toeplitz,

mi
the criterion " in question is the Durbin
algorithm. o o
Suppose that Mo‘s‘o} is an a-priori known
interval in which A . is lying, so A €
B min min
[A .B, ). Tne value of A can be approximated
e 0 min

by the value of A using the following algorithm



Step 1 : A:=A_, B:=B
Step - 2~r~k¢-§-
Step 3 : If R-AI>0 Then A:=A, else B:=\
Step 4 : If [A-B]>Z¢,
(where € is the absolute error),
Then go to Step 2

Step 5 : A: ,Eiﬁ

Step 6 : End

Note that after each iteration of steps 1 and
2, the interval which contains Am‘n is
subdivided and a final error estimation after
the k-th iteration is -

Bo-Ac

fA=A , |se=—xnr
nin ok+L

The main advantage of the present algorithm is
its sureconvergence and the absolute bound of
the final error.

The paper 1is organised as follows. In
Section Il. some basic theoretical results from
Matrix Theory are presented. In Section III, we
combine these results in order to produce the
proposed algorithm 1in 1its final form. In
Section 1V, the computational complexity of the
algorithm is given. Finally, there exists a
conclusion.

I1. PRELIMINARY RESULTS

In this Section, some important Theorems from
Matrix Theory are given. First, a definition is
stated.

Definition 1: Leadlng ksk principal submatrix

of- a nxn. nzk. matrix R is the kxk Rk {r .3.

i,j=sl..k =

The following proposition is proved in [5]
(pp.103-104).

Proposition l(fnterlacing Property)
Let R be the leading kik principal submatrix
of the nxn symmetric matrix R, then v k=l...n-1
one has: -

IJ =) [R ) A (Pkal

"

= ..skl{Rk'L}:Lt[Rn)skl{ﬁﬁ"}

wheve M @F}' %9- cgl“) e ,AM-\(QVM)

and

NRIA R ) oA (R (R ).
are the eigenvalues of the matrices Rt«sa"d R
k

respectively. It is assumed that
A (R)s...2h (R)=A, (R)
and

) EE {R

(R )h (R, )

LKil k4l k41

Proof: See in [5], pp.103-104. a

Theorem 1

Let R be a symmetric nxn matrix and Rl be its
leading k«k principal submatrix for k=1...n and
d =det(R). If d=0 for all k=1...n, then the
matrix R appears to have m-negative eigenvalues
and (n-m) positive ones, where m is the number
of sign alterations of the sequence
{l.d‘,di,...,dh} .

Proof: Suppose that p of the k eigenvalues R

are negative, that is

MRS (R)= . =

Neopry RION (R )s...5K (R,)

It is clear that

sign(det(R ))=(-1)?

According to Proposition 1,. p eigenvalues of
R are negative and (k-p) are positive. For

ked
the A () - it holds  that:
k p+l(R ) Au p+|(Rn§1}5Au-p{Rg)f

M- pas (Rey )20 (according to our assumption).

)
P, - '
(-1) sign(h (R 1)) or sign(det(R )

One can verify that S'ign{det(R”.l

sign(det(R ))-sign(k oe) Ra ,)). Therefore if

‘there exists a sign alteration from d to dv:;
then R has one more negative elgenvalue that

R, has if d and d  are of tne same sigo.

kel
then R, and R.“l have the sare number of
-negative eigenvalues. The proof it completed by
induction. ’



In the case that the matrix R is a symmetric
Toeplitz matrix, Theorem 1 can be applied
gitectly to e TEsults found by the Durpin
algorithm. Suppose now that R=(r| i~j[)i,j-1 o

From Durbin’s algorithm ([1]) one obtains 2=t

. _det{Rm4) . . :
aq"HE%TE;Tl' m=1,..,n-1 ,where Ra 1is the

leading mm principal submatrix of R [1]
Therefore R=(r ) and det(R)=a a3 ....a,
m=1,..,n . i

‘Now, we are interested in the number of sign
‘alternation in the sequence 1,a,,3,a ,.
g This number is equal to the
number of negative terms in the sequence
354,508 . (Note that from the assumption
of the first theorem amao m=0,..,n-1}).

vyd 3 ...2
"Toi

Definition: Let R be a symmetric nxn Toeplitz
.matrix. We define the function DN of R as
follows: DN(R)=(The number of negative terms in

“the sequence a,,a,...,a ),  where
a ,m=0,..,n-1, result by the application of
Durbin’s Algorithm on R. n

For the Durbin’s algorithm, it is well
known that a sign alternation exists from a
to a, (i‘e‘am-;am<°j if and only if {km|>l
am=1,..,n-1 For this réason, we can also

define DN(R) as:-
Lo .
ON(R)  =(r,<0)+ T(1-lk |<0) , where ‘the
- ’:I .

operator (x<0) is defined as follows:

(x<0) = 1 if x<0
(x<0) = 0 if xz0

One can easily seen, based on Theorem 1 and the
above remarks that DN(R) = (The number of the
negative eigenvalues of R).

In the fol?qwing Proposition a new assisting
parameter A 1s introduced.

Proposition 2
Let R be a symmetric nxn Toeplitz matrix and
A (R)=A__(R)s...sA_(R) .Then A=A (R) if and

only if  wve>0
DN(R-(A-€)I)=n-m .

DN(R-{l+€)])>n-m- and

Proof: Since R is symmetric. there exists an
orthonormal matrix Q such that R=QDQf. It can
be assumed, without loss of generality, that D

= diag(kl{R).RZ[R)....,An(R)).
From the relation vl = deT one takes
R-v1=Q(D-v1)Q"=
= Q diag(h’(R}-v,

. .3
,AztR}—v,...,AM{R}-v,....hn(R}-v)Q .

For v-h+£?kn+s we have

k“(ﬂ}-v<0,...,hh(R}-v<0
or equivalently ON(R-(A+€)1)>n-m ,

for v=A-£=AM-s we have

Al(R)-v>0....,AH(R)-v>0

or equivalently DN(R-(A-€)1)=n-m .

In order to exploit Proposition 2, it now
remains to estimate an initial interval
containing the eigenvalues of a Toeplitz
matrix. For this purpose, the following Theorem
is proved in [6] (p.371).

Theorem 2: (Gershgorin Circle Theorem)
The eigenvalues Ai(R),hz{R}...,Ah(R) of the
matrix ReC™ " fulfill the relation

(A (RY,A,(R),. A (R))e
b

h .
‘.’{zec :Iz-riilsjglrij]} .

i

In the case where R is a symmetric Toeplitz
matrix, Theorem 2 gives : :

A =

0
n=} net -
ro-Z;El ry | s?\“ (R)s)\n_ | (R)=.. .s)\t (.R}sra-rz‘;)‘:{ rkl 'Bo

Now, having the initial intervHI”{Ao.Bé]. and
using the Proposition 2 one can formulate the
foliowing algorithm for finding the eigenvalues
of the symmetric Toeplitz matrix.



111, THE ALGORITHM

In this section. the proposed algorithm is
stated:

Algorithm:

Given the real symmetric nxn Toeplitz Matrix

|i-51)1'..l«1 R
LPTLPTERRLA and the small positive constant

R=(r or equivalent its elements,

3 {for example & = 0.001),

Find the k-th eigenvalue of R, )\k(R), with
respect to the order of the eigenvalues
A RN, (R)s...oh (R) :

Error:1f A is an estimation of kk{R), € =
=|A-A_(R)| the absolute error, we demand ese*,
where €* is the defined bound of ¢.

LES ] . h-l
Step ] d AG:' r‘o-z;girkl ' Ba:- rn+2;};!r‘kl

Step 2 : A:-Ao. B:=Bn

Step 3 : S:-I-logz(g%)-l-l

Step 4 : h:=!1+d!A+il“‘d!B ’

Step 5 : For j=1:§

Step 6 : If DN(R-AI)=n-k Then A:=XA, else B:=A

Step 7 :-&:=é%§

End

Remark 1:The symbol [a] is used for the upper
nteger part of a number a. S is the number of
recursions in the for-loop and results from the
bound €*. One can easily wverifies that
z<e*=§§i%$

Remark 2: The small constant & is essential: If
we set 3=0, then the first value of L would be
L-r. and the matrix (R-rol) would have its
first leading subdeterminant equal to zero. In
that case, an error “division by 2zero" would
appeared in the call of the function DN. This
constant increase the error bound € by the

neqligible quantity §;£.

Remark 3: The substraction of Al from the
matrix R, effects only its diagonal, SO r "ig
replaced by {ro-h)!.

IV, COMPUTATIONAL MULTIPLEXITY OF THE ALGORITHM

The Durbin recursion appears approximate]
2n? MADs (Multiplications and Divisions) [1].
The number of required calls of function DN is
S where ‘

B -A Bo'Ao PR
S:="logi(-~!—€;9)-1-lslog1 '—gi-)’lﬂgz(gikgllfkl}

So, the total cost in MADs (Multiplications and
Divisions) is P, where '

»-
P = anlogzt—g—;.kz Ir,1)
=1

1f the matrix R is an autocorrelation matrix

and the relation roz]rkl \ :k €{1,...n-1)

r.
holds then Ps?nz[logz{n-l}+logt{—zé)] .

The total multiplexity can be reduced more than

25% if one wants to compute all the eigenvalues

-of R.

V. CONCLUSION

A new fast and efficient algorithm for the
computation of the eigenvalues of a symmetric,.
real, Toeplitz matrix is proposed. The

algorithm has the following advantages:

- It converges always, since it is based on the

bisection method.

- Multiple eigenvalues do not effect it. .

- A bound for the absolute error is atpriori

known

- Each eigenvalue can be computed directly,

without computing all the absolute greater

eigenvalues (as in the method of the Powers),

and so no additive computational errors

accumulate. .

- The proposed algorithm can be developed in 2

parallel version using parallel Durbin or Sh::

recursions.



APPEND]X

{ Const N=8; {dimension of R}
NI=7: {(Nl=n—)
{ Type Vector=Array[0..N1] of Real; )
{ Eigenlndex=1..N; }
{ VAR U:VECTOR; )

Function
Topeigen(r:Vector;K:EigenIndex:e:Real):Real;
(r=(V6,r,'-~,r",,-X) '

( K is the index of the eigenvalue)
{ e is the hound of the absolute error)

Const D=0.001; ( D is the small constant &

Var A,B,L,H:Real;
S,J:Integer;

Function DN(L:Real):integer; {the function
DNj}.
Var Y.Z:Vector:
K.A.r0:Real:
M,1.SUM:Integer;
Begin

r0:=r[90]; ) )
r{0):=r0-L;: {Durbin’s algorithm)
K:=-r[1]/r[0]};
A:=r{0]);
If A<O then SUM:=1 Else SUM:=0;
y[1]:=K;
For M:=1 to N-2 do
Begin
a:=(1-K*K)*a;
1f A<O then SUM:=SUM+l;
K:=r[M+1];
fFor 1:=1 to M do
K:=K+r[M-141]1*Y[1];
K:=-K/A;
For ]:=1 to M do
Z[1]:=Y[1]4K*Y[M+1-1];
For 1:=1 to M do
Y[1):=Z[1]s
Y[M+1]:=K;
End< -
a:=(1-K*K)*a:
1f A<C then SUM:=SUM+1;
r(0}:=r0;
DN:=SUM:
End:

Begin { main part of the algorithm)
H:=0:
For J:=1 to N-] do
H:=H+Abs(r[J]):
A:=r[0]-2*H;
B:=r[0]+2*H;
S:=Round{1In((B-A)/e)/1n(2)-0.5);
L:=((1+D)*A+(1-D)*B)/2;
For J:=1 to S do
Begin
If DN(L)<=N-X then A:=L Else B:=L;
L:=(A-B)/2:
end:
Topeigen:=L:
End: {Topeigen)

WRITELN(TOPEIGEN(U,8.1e-10):4:10):

{R=(u
eigenvalue)
{e=1E-10}

END.

Vieid 1, 5e1,.00  (5ED
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