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Abstract—This paper presents a simulation-based optimization
method for automatic sizing in analog and RF IC blocks. It
introduces a combination of a state-of-the-art Multi Objective
evolutionary algorithm (EA) with a new constraint handling
approach to effectively explore the high-dimensional constrained
design space, typical in every analog and RF IC block design. An
additional modification in the core of the EA is also proposed for
handling efficiently mixed continuous-integer parameter search
spaces. The methodology is illustrated in a Nested-Current-
Mirror amplifier and a Wideband Low Noise Amplifier achieving
better results than typical constraint handling approaches.

Index Terms—sizing, optimization, analog, evolutionary algo-
rithms

I. INTRODUCTION

Over the past decades and with the continuing transistor

miniaturization, the demand for mixed-signal systems-on-a-

chip (SoCs) with increased functionalities and reduced cost

for applications such as automotive, portable devices and

communications has increased exponentially. However, tran-

sistor scaling entails problems for the design of such systems,

as short channel effects and variations become main issues.

Unlike digital Integrated Circuits (ICs) that have established

synthesis flows and automated tools to assist the development

of complex systems, analog and RF IC design flow automation

has not yet reached maturity. Therefore robust automation

methods are needed to increase design cycle efficiency.

The main approaches to analog design automation include

optimization methods coupled with a circuit simulator and

equation based approaches, that seek to optimize closed form

representations of circuit-block representations. Although the

equation based approach may provide easier optimization

tasks, the existence of higher order effects that arise with

smaller channel dimensions and the designer’s intervention

may deteriorate the design procedure. On the other hand,

simulation-based approaches face the challenge of spending

excessive computational resources for the exploration of the

vast design space of analog circuits. Extensive research has

attempted to address this problem, with many optimization

strategies being proposed and the EAs being state-of-the-art

[1], [2] in this direction. Though algorithms in the literature

provide ways to handle constrained optimization, which is

the essence of circuit sizing, they have been mainly aimed

for continuous parameter spaces. However, in analog and RF

design, integer ratios appear often, for instance when sizing

current mirrors.

This work proposes a new approach to sizing analog and RF

building blocks with simulation-based optimization. We aim

to address the mixed parameter space of circuits and provide a

framework that produces competitive results when constraints

are applied, using EAs as the optimiation core. To address

the constraint handling part, we note that the main approach,

which is motivated by the feasibility rule [3], does not make

use of the infeasible space fitness function information. The

incorporation of infeasible fitness function information in EAs

is recently gaining attention [4]. Here we employ a correspond-

ing scheme using the Non dominated sorting genetic algorithm

(NSGA-II) [5]. Our approach can handle integer as well as

continuous search spaces, exploit infeasible fitness function

information and optimize for multiple objectives.

We argue that our approach can aid the designers to discover

the capabilities of a particular design and reason about the

competing trade-offs, while exploring the fitness landscape

efficiently. To examine its performance, we use it to size two

state-of-the-art topologies, a Nested-Current-Mirror amplifier

[6] and a wideband low noise amplifier [7]. The remainder of

this paper is organized as follows. In section II, the proposed

approach is presented. Section III presents experimental results

and Section IV concludes the paper.

II. PROPOSED APPROACH

Analog and RF schematic sizing is cast to a constrained

optimization problem:

minimize f(~x), ~x = [x1, x2, . . . , xD] ,
subject to: gj(~x) ≤ 0, j = 1, . . . , l

Li ≤ xi ≤ Ui, i = 1, . . . , D,

where vector ~x contains the design variables, Li and Ui are the

lower and upper bounds of the i-th variable, S =
∏D

i=1
[Li, Ui]

is the variable space, f is the objective (fitness) function and gj
is the j-th constraint. In our case, the fitness function contains

performance metrics of the circuit to be sized. For a given

parameter vector ~x, its degree of constraint violation is defined

as

G(~x) =
∑

j

max[0, gj(~x)].
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In the context of simulation-based sizing using EAs,
parametrized testbenches are simulated in iterations using a
commercial simulator and software platforms, that automate
the procedure of data processing and simulation automation.
For the remainder of this section, we assume that the reader is
familiar with the concepts of EAs and of NSGA-II particularly.

A. Handling Integer Parameters

The trivial approach to treating mixed parameter spaces
using EAs is handling discrete parameters as continuous ones.
Following mutation, the parameters that need to be discrete are
transformed back to the nearest integer value. Though simple,
this approach is flawed; in the case that a particular discrete
variable is restricted to small ranges at a particular stage of the
optimization, it remains unchanged for the remainder of the
procedure and therefore hinders exploration [4]. To address
this problem, we adopted a quantization scheme: vector ~x is
divided into two parts,

~xc = [xc0, xc1, . . . ] ,

~xi = [xi0, xi1, . . . ] ,

where xcj and xij are the j-th continuous and integer pa-
rameters respectively. For the vector containing continuous
variables, the bounded polynomial mutation is applied as in
[5], while for the integer variables, a Poisson distribution P (λ)
is assumed. New values for xij are sampled from P (λ), where
λ is equal to xij . This mutation operator boosts exploration
and alleviates the problem of stagnation.

B. Constraint Handling

When constraints are present, the goal of the optimizer is
twofold; to drive the search to the parameter space region
where the constraints are satisfied (feasible region), and then
perform an elitist approach to find the optimal solutions. A
straightforward approach is the inclusion of penalty terms in
the fitness function. Each penalty term is a weighted version of
the degree of violation for each constraint. The determination
of the weights, however, is left to the designer and may lead to
biasing towards some constraint satisfaction on top of others.

A preference based scheme (feasibility rule) provides un-
biased operation and has gained recently attention [1]. It
compares pairs of candidate solutions as follows:

1) Feasible candidate solutions are preferred than infeasible
ones,

2) Amongst feasible solutions, the ones with better fitness
function are preferred and,

3) Amongst infeasible solutions, the ones with the least
degree of constraint violation are preferred.

This scheme is incorporated on the EA’s selection process
and drives the population to feasible regions. However, by
favouring constraint satisfaction more than fitness function
minimization, this approach leads to convergence to feasible,
but not optimum parameter regions [4]. This problem is
exacerbated in situations where the feasibility regions are

disjoint, or the optimum solutions lie close to the feasibility
boundary.

Since trade-offs are the essence of circuit sizing, optimum
solution may lie close to the infeasible spaces in analog design
spaces. Therefore, driven by [8], we introduce a mechanism
to the NSGA-II algorithm that executes in parallel with the
feasibility rule and makes use of infeasible fitness functions.

At each iteration (generation), the offspring are sorted
according to their fitnesses using the non-dominated ranking
algorithm. Those candidate vectors that do not survive to
the next generation and are on the first pareto level, are
stored in an archive. Then, the individuals in the archive
and the surviving population are sorted by their degree of
constraint violation. The next step is to select k vectors with
the minimum (maximum) constraint violation in the archive
(population), a total of 2k vectors. These are sorted once more
using the non-dominating procedure, accounting only for their
fitness functions. The k best individuals are placed on the
population and the rest are discarded. As a rule of thumb, we
choose k to be equal to 1/20 of the total population.

An example is illustrated in Fig.1, where a 2D Rastrigin
function is limited to be feasible only in the regions inside the
red curves, i.e.

minimize f(~x) =
∑2

i=1 x
2
i − 10cos(2πxi) + 10,

subject to: 3(x1 + 7)2 + x22 ≤ 0.3
(x1 + 8)2 + (x2 − 3)2 ≤ 2.

Fig. 1. Top row: Optimization run for a multimodal constrained function,
using the feasibility rule. Bottom row: optimization run using the constrained
handling method proposed. Initial candidate vectors are identical.

A single-objective Genetic Algorithm (GA) is used to find
the minimum of this constrained function. The one using
the feasibility rule concentrates its search in the large fea-
sible region, whereas the GA incorporating the constraint-
handling method described above, for single-objective this
time, searches through both feasible regions.

III. EXAMPLE APPLICATIONS

For our experiments, an in-house tool was used to interface
the commercial simulator Spectre. Simulations run in batch
mode and in parallel, on a machine with an 8-core Intel Xeon
processor.
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TABLE I
NCM SPECIFICATIONS

Performance Desicription Specification
PM Phase Margin ≥ 90o

GM Gain Margin ≥ 60dB
A0 DC Gain ≥ 72dB

N10k Noise @ 10kHz ≤ 100nV/
√
Hz

SRavg Slew Rate (average rise and fall) maximize
Pdc Total power dissipation minimize

Design Variable Description Constraint
Wi MOS Width [1− 30]um
Li MOS Gate Length [0.2− 1]um
Ki Mirror Parameters [1− 5]
Vb Biasing Voltage [0.7− 1.1]V

A. Nested-Current-Mirror amplifier

Here we demonstrate our sizing strategy on the single
stage Nested-Current-Mirror amplifier (NCM) [6], shown in
Fig. 2. This topology aims to address display applications,
where large capacitive loads need to be handled. The ratios
of the current mirrors employed in this topology are key
parameters for sizing. These are integer numbers and are
addressed accordingly with our proposed approach.

Fig. 2. Nested Current Mirror amplifier proposed in [6]. Half-circuit instance
names are shown, since the circuit is symmetric.

For this experiment, we seek to determine the mirror ratios
(K1-K6), the unit transistors dimensions and the voltage Vb.
Three types of unit transistors are considered, one for nmos
devices, one for pmos devices and one for Mb 1. A TSMC
90nm process is used to design the amplifier.

For comparison, we follow the original implementation of
the topology with 15nF load capacitor, VDD = 1.2V and set
the design constraints equal to the ones stated in [6]. For
trade-off exploration, we optimize for high slew rate and low
power consumption. The design constraints and specifications
are given in Table I.

Fig. 3 shows the pareto fronts resulting from two NSGA-II
optimization runs, one using the feasibility rule and the other
using the new constraint handling method. Both experiments
use the same set of hyperparameters, with population size
and maximum generations set to 200 and 300 respectively,
and the mixed-integer mutation scheme proposed. The plot
suggests that we are able to size the circuit with better slew rate
and power trade-off compared to the original implementation.
Also, the proposed constraint handling is able to provide

1The transistors sizes are defined by parameters K1-K6 and the unit
transistors, i.e. M2 width is (K2+K3) times the unit pmos width.

TABLE II
NCM DESIGN VARIABLES

Var Size Var Size Var Size Var Size
Wpmos,nmos 1u K2 2 K5 1 Wbias 6.1u
Lpmos,nmos 1u K3 1 K6 5 Lbias 1u

K1 2 K4 5 Vb 0.98V

slightly better and denser pareto fronts. The patches in the
pareto front of the feasibility rule can be explained as follows:
Traversing an infeasible part of the design space to reach non-
dominated solutions is easier for the proposed algorithm.

The performance of the two methods is assessed quantita-
tively using the Hypervolume indicator (HV) [9]. This indica-
tor provides a measure of the region which is dominated by
each pareto front and bounded by a reference point, therefore
higher HV values are better. Using the same reference point
for both pareto fronts, the HV value for the proposed method
is 28.5 · 104 whereas for the feasibility rule 18.34 · 104.

The optimization took approximately 20 minutes. Table II
provides the sizes for an example solution marked on the
pareto front, with 1.2uW power dissipation and the same slew
rate as the original implementation (250 V/s).

Fig. 3. Pareto fronts for the NSGA-II algorithm with the proposed constraint
handling method, and the typical NSGA-II with feasibility rule.

B. Inductorless Wideband LNA

An inductorless, wideband LNA, shown in Fig. 4 [7], is
sized in this example. This topology adopts active shunt
feedback to achieve wideband operation.

We use the same TSMC 90nm process, with 1.2V supply
voltage for both the main and the feedback amplifier. The
capacitive load is 50fF and the buffer is considered lossless.
In the same manner as in [7], transistor lengths are set to the
lowest acceptable value by the process, i.e. 100nm. The design
specifications are set equal to the ones shown in the original
implementation, with the exception of higher bandwidth, and
they are shown in Table III.

The optimization goal is to determine the trade-off between
power consumption and Noise Figure. The population count is
set to 150 and the maximum generations to 200. The resulting
pareto fronts using the NSGA-II with feasibility rule and with
the proposed constraint handling method are shown in Fig. 5.

The plot suggests that the proposed method finds wider
pareto fronts than the feasibility rule. The HV value for
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Fig. 4. Inductorless, wideband low noise amplifier proposed in [7].

TABLE III
WIDEBAND LNA SPECIFICATIONS

Performance Desicription Specification
S11 Input Matching (entire bandwidth) ≤ −10dB
IIP3 Third-order intercept point @ 2GHz ≥ 8dBm
Av Voltage Gain ≥ 18dB
BW −3dB Bandwidth ≥ 3GHz
NF Noise Figure @ 2GHz minimize
Pdc Total power dissipation minimize

Design Variable Description Constraint
Wi MOS Width [1− 100]um
RF Feedback Resistor [1− 10K]Ω
Rb Self-Biasing Resistor [1− 20]KΩ
R1 Biasing Resistor [1− 20]KΩ
Cci Coupling capacitors [0.5− 10]pF

VBIAS M3 biasing [0.3− 0.8]V

the feasibility rule is 26.28 and for the proposed method
100.62, indicating that the proposed method provides more
uniform and widespread solutions. Both experiments took
approximately 25 minutes.

Repeating the above experiment 5 times, we calculate the
figure-of-merit (FOM) for wideband LNAs [7]. The mean
FOM for the pareto front of the proposed methodology is
41.2dB, while for the one resulting from feasibility rule and
NSGA-II is 39.6dB. We note that the achieved FOM is
increased with comparison to the original implementation. The
sizes of an example design marked on the pareto front are
shown in Table IV.

IV. CONCLUSION

A simulation-based optimization strategy for sizing in
nominal conditions of analog and RF building blocks was
proposed. In order to improve the efficiency of EAs when
sizing analog circuits, we presented a scheme to handle
mixed-integer parameter spaces and a new constraint handling
method. The proposed approach was demonstrated on an
inductorless wideband Low Noise Amplifier and a Nested-
Current-Mirror Amplifier. It was shown that mixed-integer
optimization provided competitive results and the proposed
constraint handling method was able to provide wider pareto
fronts and therefore better exploration of the competing trade-
offs.

Fig. 5. Pareto fronts for the wideband LNA experiment.

TABLE IV
WIDEBAND LNA DESIGN VARIABLES

Var Size Var Size Var Size Var Size
W1p 12×1.05u W3 3×1.2u RF 340 Ω Cc3 900fF
W1n 90×1u R1 15.6KΩ Cc1 10pF VBIAS 0.55V
W2 10×1.05u Rb 9KΩ Cc2 5pF
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