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Abstract—The related research presents a novel methodology
for implementing power-efficient analog classifiers, achieving a
power consumption of merely 176nW. These classifiers efficiently
process multiple input features while sustaining a high degree
of precision and minimizing power consumption. It is based
on Threshold Machine Learning model, and integrates sigmoid
activation circuit along with current comparators. Validation of
the implementation was performed employing a real-time vessel
dataset, achieving a good accuracy of 82.95% in predicting true
waves from inertial sensor data. Furthermore, a comparative
analysis was conducted with other analog classifiers employing
the identical dataset. All related models were trained using a
software-based equivalent one. The executed design was imple-
mented using a TSMC 90nm CMOS process. It is simulated with
the Cadence IC Suite.

Index Terms—Inertial sensor data, analog VLSI design, sea
state, wave height, power-efficiency

I. INTRODUCTION

Inertial sensors are vital components within a wide array of
technological applications, ranging from aerospace and auto-
motive systems to consumer electronics and wearable devices
[1], [2]. These sensors function on the principle of measuring
the acceleration, angular velocity, and sometimes orientation
of an object relative to an inertial frame of reference [3]. By
utilizing accelerometers and gyroscopes, inertial sensors can
precisely track changes in velocity and orientation, enabling
them to play a pivotal role in tasks such as navigation,
motion analysis, and stabilization [4], [5]. Their compact size,
low power consumption, and high accuracy have made them
indispensable tools in fields like robotics, virtual reality, and
even healthcare.

As the degree of autonomy in maritime operations esca-
lates, a concurrent augmentation in the deployment of inertial
sensors is observed [6]. Estimating sea state or wave height
through the use of inertial sensors represents a pivotal advance-
ment in maritime technology [7]. These sensors, designed to
measure the accelerations and angular velocities experienced
by a vessel, offer a means to discern crucial information
about the prevailing sea conditions [8]. By analyzing the
dynamic responses of a vessel to wave-induced motions,
valuable insights into wave height, frequency, and direction
can be derived [7], [9]. These data not only enhances maritime

safety by providing real-time information for vessel operators
to navigate through rough seas, but also prove invaluable for
various offshore operations, such as oil and gas exploration,
where knowledge of wave conditions is paramount [7], [9].
Moreover, the integration of inertial sensors for sea state
estimation showcases a remarkable fusion of cutting-edge
sensor technology with the imperative needs of the maritime
industry, clarifying how innovation continues to drive progress
in this vital sector.

Driven by the need for low-power and space-efficient so-
lutions in smart inertial sensors for estimating sea state or
wave height [10], [11], this study introduces a power-efficient
(176nW ) and low-voltage (0.6V) analog hardware threshold
classifier, incorporating a sigmoid activation function. The
implemented classifier represents a promising approach. It
is suitable for smart sensor classification systems relying on
battery power, as it attains an accuracy of 82.95%. It has
been designed and validated using a real measurement dataset
supplied by METIS Cyberspace Technology company. The
performance of the proposed design is verified through layout
related (post-layout) simulation results. They are conducted
in a TSMC 90nm CMOS process. The related simulations
are extracted utilizing Cadence IC Suite. This validation is
accomplished by comparing the results with those obtained
from a software-based approach and classifiers related to
analog circuits.

The structure of this paper unfolds as follows: Section II
delves into the mathematical underpinnings pertinent to the
analog integrated threshold classifier proposed in this work.
Section III outlines the primary components and the envisaged
architecture of the classifier. The validation of the proposed
classifier is conducted in Section IV, leveraging a real-world
sea state dataset derived from inertial sensors. This section
further includes a comparative analysis. More specifically the
analog integrated and software implementations are provided,
supplemented by sensitivity tests. Section V offers a compara-
tive study and engages in a comprehensive discussion. Finally,
in Section VI, we draw concluding remarks that encapsulate
the key findings and implications of this study.

II. SIGMOID THRESHOLD CLASSIFIER

Threshold classifiers, akin to simplified versions of Support
Vector Machines (SVMs), find practical application in scenar-979-8-3503-1884-5/24/$31.00 ©2024 IEEE



ios where classes do not exhibit inherent linear separability
[12]. Through the application of a non-linear transformation
function denoted as φ(), these classifiers have the capacity
to map the data onto a higher-dimensional feature space,
rendering the classes either linearly separable or nearly. Sub-
sequently, a threshold value denoted as Ith is adjusted to
facilitate effective class differentiation. The decision criterion
for the threshold classifier can be summarized as follows:

y =

{
1 if φ(X) ≥ Ith
2 if φ(X) < Ith

. (1)

In this context, y represents the classifier’s prediction, while
X denotes a specific input vector. The simplicity of this
architecture lends itself well to hardware implementations, as
it efficiently minimizes chip area without sacrificing classifi-
cation accuracy.

This study employs a mathematical model to represent each
sub-class with a single feature, specifically a one-dimensional
sigmoid activation function [12]. The model is formulated as
a summation of univariate sigmoid activation functions, akin
to circuits of sigmoid-based current summation, and can be
approximated by:

φ(X) =

K∑
i=1

{φi(X)}. (2)

In this specific application, φi() is selected to be a univariate
sigmoid activation function, defined by:

φi(X) = A · 1

1 + e(−x+µi)
. (3)

where parameter µ and A denote the mean value and amplitude
of the sigmoid function. The choice of the sigmoid function
is motivated by its ease of implementation compared to other
alternatives.

III. CLASSIFIER: ARCHITECTURE AND MAIN BLOCKS

In this section, we introduce both the architecture and
the essential building blocks related to the proposed analog
threshold classifier. To achieve this implementation, it requires
the use of a sigmoid function circuit [13] and a Winner-Takes-
All (WTA) circuit [14]. The entire classifier is designed to
function with a supply voltage set at VDD = −VSS = 0.3V .
Here, we have employed sub-threshold region techniques to
reduce power consumption.

Each sigmoid function circuit, illustrated in Fig. 1, serves
the purpose of generating a univariate sigmoid function curve.
This circuit comprises a PMOS cascode current mirror (con-
sisting of transistors Mp2,Mp3 and Mp5,Mp6), a NMOS cas-
code current mirror (consisting of transistors Mn3 to Mn6) to
ensure the production of high quality sigmoid curves, even for
small bias currents and a simple differential pair Mn1, Mn2.
Its electronic tuning capability provides precise control over
the non-linear transformation function, offering both flexibility
and accuracy in its behavior. The related simulation results
are provided in Fig. 2. The Ibias and Vr parameters tunes the
height and the mean value of the sigmoid function respectively.

The dimensions of the transistors for a single sigmoid function
circuit are summarized in Table I.
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Fig. 1: Here, the design of the sigmoid function circuit. It composed
of two cascode current mirrors and a differential pair.
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Fig. 2: The tunability in the output current via circuit parameters.
The Ibias and Vr tunes the height and mean value respectively.

TABLE I: The sigmoid function circuit’s related dimensions (Fig. 1).

NMOS W/L
(µm/µm)

PMOS W/L
(µm/µm)

Mn1,Mn2 0.4/1.6 Mp1-Mp6 1.6/1.6
Mn3-Mn6 0.8/1.6 - -

The Winner-Takes-All (WTA) circuit utilized in this study
serves as an argmax operator, indicating the maximum of its
inputs. Fig. 3 depicts a Ncla-input WTA circuit, with a constant
current Ibias serving as the main bias point of the circuit.
This configuration effectively transforms it into a current-mode
comparator with multiple inputs. In this specific application,
this WTA circuit assumes a crucial role in extracting the clas-
sifier’s final prediction. The neuron cell with the highest input
current emerges as the winner, yielding a correspondingly
elevated output current. We have set all transistors’ dimensions
equal to W/L = 0.4µm/1.6µm.
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Fig. 3: A WTA circuit utilizing Ncla neurons based on the Standard
Lazzaro NMOS architecture.

The architecture of the proposed threshold classifier is
depicted in Fig. 4. Here a 2-class and Nd-feature classification
problem can be solved by the implemented classifier, because
it consists of a 2-neuron WTA circuit, Nd sigmoid function
circuits and a threshold current. In this case only the prob-
ability of one class is calculated. Subsequently, the resulting
current, which represents this probability, is compared to a
predetermined threshold current by means of the WTA circuit.
It is worth emphasizing that the magnitude of this threshold
current significantly influences the classifier’s accuracy, influ-
encing its ability to detect true wave cases.

The proposed approach employs a combination of Nd = 8
univariate sigmoid function circuits for the non-linear trans-
formation process. Each of these circuits produces an output
current that signifies the likelihood of the input vector belong-
ing to a specific class based on the corresponding feature (high
or low current). Subsequently, the calculated probabilities for
one class are aggregated using current mirrors (CMs), and the
resulting sum is compared to a predefined threshold current,
denoted as Ithreshold. The classifier’s prediction is conveyed
through the output current I1 of the Winner-Takes-All (WTA)
circuit. This current is expressed in binary form, where a
logical 1 (representing a high current value) designates the
first class as the winner, while a logical 0 (indicating a low
current value) signifies the second class as the winner.

IV. SOFTWARE TRAINING CO-DESIGN

To establish the required parameters for the circuit,
a software-based implementation becomes essential. The
datasets, available in digital format. They have undergone pre-
processing to align their characteristics with the operational
range of the circuit, which, in this investigation, spans from
−200 to 200 mV. Subsequently, a classifier replicated in soft-
ware, mirroring the number of input dimensions and classes
as the equivalent hardware version, undergoes training using
these datasets. Using this software-based classifier, the mean
values and weights, related to each cluster, are calculated. The
voltage parameter Vr and the bias currents Ibias are determined
for the analog integrated implementation. Also, we should

mention that this process is performed only once. After this
procedure, the resulting parameters are subsequently exported
and written in a memory (for our case analog) [15].

Each class is associated with voltage parameters [Vri]
Nd
i=1,

where Nd denotes the number of input dimensions, corre-
sponding to the elements of the modeled sigmoid’s mean
vector. Also, these values can be directly written into an analog
memory [15]. Each class is endowed with Nd Ibias currents,
which result from the multiplication of two distinct factors:
the probability of each class and a normalization factor based
on the training procedure. It is crucial to highlight that these
bias currents are normalized within the interval of 1 to 9
nA, ensuring proper circuit functionality while keeping power
consumption at a minimum.

V. SEA STATE OR WAVE HEIGHT APPLICATION AND
SIMULATION RESULTS

In order to test the threshold classifier, a real-measurement
dataset was provided by METIS Cyberspace Technology
Corporation which was obtained from real-time naval vessel
inertial measurements. The measurements are related to the
following: Vessel hull heave displacement, Vessel hull heave
speed, Vessel hull rolling angle, Vessel hull rolling turn rate,
Vessel hull surge displacement, Vessel hull surge speed, Vessel
hull yaw turn rate, Vessel hull pitching angle and Vessel hull
pitch turn rate. This dataset comprises 40320 measurements
for each of the aforementioned instances. The inertial sensors
yield one measurement for each Vessel hull instance every
15 seconds. Based on a combination of papers related ML
models [16] and parametric estimation of the waves [7], [9],
the extracted features are the following: peak-to-peak, crest
factor, root mean square, shape factor, margin factor, skewness
value, impulse factor and kurtosis factor. Finally, a 70− 30%
split was chosen for training and test sets, resulting in a total
of 12096 test samples.

Here, we have evaluated the proposed classifier’s perfor-
mance. More specifically, concerning classification specificity
and the circuit’s behavior under Process, Voltage, and Tem-
perature (PVT) variations. For this reason two separate tests
are carried out on the implemented layout illustrated in Fig.
5. The total area of the layout equals 0.078mm2. To accom-
modate experimental variability, twenty different training-test
iterations are performed and the related simulations results
are depicted in Fig. 6. To verify the design’s sensitivity
a Monte Carlo analysis is performed. In particular, Fig. 7
presents the Monte Carlo Histogram. The related simulations
are performed for N = 100 data points. The related results
regarding both tests are summarized in Table II, offering
a comprehensive overview of the circuit’s performance and
resilience. In addition, for a certain number of snapshots, we
present in Fig. 8 both the height of the waves based on the
measurements and whether the measurement is a wave or not.
Furthermore, it also shows when the classifier makes a wrong
prediction (1 False prediction) for one of the measurements.
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Fig. 4: The proposed classifier’s top-level architecture. It consists of 2 classes and Nd features. The first class has Nd sigmoid function
circuits and Nd current mirrors (CM) for the summation. The second class is a decision boundary. The WTA is used as an argmax operator.

Fig. 5: The layout configuration of the proposed architecture. Also,
it consists of dummy transistors.

TABLE II: Performance Results

Method Best Worst Mean Std.

Software 88.20% 80.30% 85.50% 2.34%
Proposed 87.0% 78.90% 82.95% 2.53%

Monte Carlo 88.10% 80.50% 83.75% 1.69%

VI. LITERATURE SUMMARY AND PERFORMANCE
ANALYSIS

The literature reveals a prevalent trend where analog clas-
sifiers are often customized for particular applications. While
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Fig. 6: Results of the implemented architecture’s classification and the
corresponding software model on the vessel classification dataset over
twenty iterations. There is a strong correlation between the outcomes.

this specificity can pose a challenge when attempting to con-
duct impartial comparisons across a range of implementations,
it also opens up the possibility of adapting these classifiers
for a shared application. This adaptation can pave the way
for a thorough assessment of performance, encompassing not
only ML models but also alternative methodologies. Moreover,
Table III offers a comprehensive overview of our study’s
performance metrics alongside comparable classifiers like
Multilayer Perceptron (MLP) [17], ANN [18], Long Short-
Term Memory (LSTM) [19], Radial Basis function [20], K-



TABLE III: Comparison of analog classifiers on the Vessel dataset.

Classifier Worst
accuracy

Median
accuracy

Max
accuracy

Power
consumption

Classification
speed

Energy per
classification

No. of
Dimensions

This work Threshold 78.90% 82.95% 87.00% 176nW 300K classifications
s

0.59 pJ
classification

8

[17] MLP 84.60% 87.32% 91.30% 215.14µW 930K classifications
s

231.33 pJ
classification

8

[18] ANN 73.30% 77.42% 80.30% 1.43µW 3M classifications
s

0.48 pJ
classification

8

[19] LSTM 92.10% 96.13% 100.00% 15.18mW 870M classifications
s

17.45 pJ
classification

8

[20] RBF 76.70% 80.43% 82.60% 17.95µW 200K classifications
s

89.75 pJ
classification

8

[21] K-means 81.80% 87.33% 91.20% 67.78µW 5M classifications
s

13.56 pJ
classification

8

[22] Bayes 73.80% 78.67% 81.40% 573nW 100K classifications
s

5.73 pJ
classification

8

[23] Fuzzy 78.40% 82.34% 87.90% 689nW 4.55K classifications
s

151.43 pJ
classification

8

[24] Centroid 81.30% 82.45% 86.40% 683nW 100K classifications
s

6.83 pJ
classification

8

[25] GMM 77.20% 80.83% 83.60% 612nW 100K classifications
s

6.12 pJ
classification

8

[26] Threshold 78.20% 79.47% 83.90% 312nW 100K classifications
s

3.12 pJ
classification

8

[27] SVM 79.60% 80.65% 81.60% 45.42µW 140K classifications
s

324.43 pJ
classification

8
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Fig. 7: Monte-Carlo simulation results after layout for the proposed
architecture on the vessel classification dataset, with a mean accuracy
of µM = 83.75% and a standard deviation of σM = 1.69%.

means [21], Bayes [22], Fuzzy [23], Centroid-based [24]
Gaussian Mixture Model (GMM) [25], Gaussian Threshold
[26] and Support Vector Machine (SVM) [27] all within the
context of sea state or wave height application dataset.

The proposed work presents a convincing solution. It offers
a balance between high accuracy, minimization of power
and energy consumption per classification when compared to
related works in the domain. It is essential to highlight that, in
this particular application, the design does not achieve a high
input dimensionality. This classifier was also tested in higher
dimensionality inputs (more features classification tasks) and it
gains a remarkable advantage by eliminating the necessity for
Principal Component Analysis (PCA), enabling the utilization
of high input dimensions. Here is necessary to achieve this
without any loss of information. On the contrary, several other
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Fig. 8: Here, a specific number of snapshots related to the state of
the sea are presented. They consist of wave height based on the
measurements and indicate whether the measurement represents a
wave or not. The inertial sensors provide a measurement every 15
seconds, and this measurement is classified (as a wave or not) by
the proposed classifier. The classifier makes an incorrect prediction
(False) for one of the measurements.

topologies resort to dimension reduction, limiting them to 16
dimensions, which constitutes a notable drawback in prior
related works, except for the more complex models [17]–[19],
[21]. As we have referred our proposed design demonstrates
the capability to effectively classify multiple classes, we opt
for a two-class problem to ensure a fair comparison with
binary analog classifiers [23], [26], [27].

Regarding accuracy in classification, the proposed frame-
work outperforms related literature, except for MLP [17],
LSTM [19], and K-means [21]. While these implementations
achieve superior accuracy, it comes at the cost of heightened
complexity, increased power usage, and a larger silicon area
attributable to a greater number of components. In contrast,
the deployed Threshold classifier minimizes power consump-
tion compared to alternative classifiers, presenting a balance



between accuracy and classification speed due to its simple
model structure (ease of implementation). Similar findings are
echoed in the Gaussian Threshold (the second-lowest power
consumption) [26]. It is crucial to highlight that in applications
involving inertial sensors of this nature, rapid classification
speed holds less significance, mainly because of their rare
incidence. As a result, in the examined design, classifica-
tion speed deliberately takes a secondary role to improve
accuracy and optimize/reduce power consumption. Moreover,
it demonstrates lower energy consumption per classification
in comparison to literature classifiers. One exception is the
ANN [18]. It has a drawback that it is typical provides lower
classification accuracy.

VII. CONCLUSION

In this study, an alternative analog integrated classifier was
introduced, characterized by its ultra-low power consumption
at only 176nW and its reliance on sigmoid-based thresholding.
The core components of this classifier comprise circuits im-
plementing the sigmoid function, complemented by an argmax
circuit. To assess its specificity, a real-time vessel dataset was
employed, with measurements taken in actual conditions. All
post-layout simulations were conducted using the TSMC 90nm
CMOS process, allowing for a comprehensive comparison
with both software-based implementations and a diverse array
of analog classifiers. Notably, the proposed implementation
yielded an impressive accuracy rate of 82.95%, showcasing
its potential as a fundamental component in inertial sensor
systems.
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