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Abstract—In this paper a new approach for automatic technol-
ogy migration of analog Integrated Circuits (ICs) is described.
The proposed approach uses a software interface between com-
mercial simulators and a Bayesian Optimization (BO) algorithm
to automatically size a fixed topology in the target technology
node, given a sized schematic in a source technology as golden
standard. By using a new acquisition function for BO, we are
able to simulate and examine multiple candidate solutions in
parallel, thereby reducing the total runtime of the procedure. The
proposed approach is demonstrated on two real world circuits,
by migrating their schematics from a TSMC 90nm to a TSMC
40nm technology.

Index Terms—migration, optimization, analog circuits

I. INTRODUCTION

MODERN era systems require high levels of integration

and low power utilization, rendering circuit design a

tedious procedure. In the case of analog and Radio-Frequency

(RF) circuits, new applications such as Internet-of-Things

impose strict specifications and require extensive verification

prior to tape-out. Automated tools to assist manual labour for

analog circuit design could provide a remedy to this situation.

However, they have not yet reached maturity, unlike their

digital counterparts. Therefore, the development of tools to

assist analog designers is a research direction that can have a

crucial impact on the semiconductor industry.

A particular task that designers frequently come across

is the fabrication technology migration one; A preselected

circuit topology that has already been sized in an initial

(source) technology must be re-designed in another (target)

one. The performance of the initial design must be preserved

during this procedure. Although sizing the initial circuit in the

source technology provides a set of empirical rules to guide

the migration, this procedure is often time consuming and

requires many verification trials to complete successfully. A

tool that automatically performs circuit migration can reduce

the design-to-market time and thereby the design costs.

Automated technology migration of analog circuits is ad-

dressed in the literature by two main approaches, simulation-

based ones and model based ones. The latter includes [1],

where the devices are scaled to preserve the transconductance

gm in the target technology. This procedure is followed

by a tuning step that requires a user-provided qualitative

dependency matrix to complete. In [2], device scaling fac-

tors are derived using a MOSFET compact model and the

transconductance-to-current ratio gm/Id methodology. Scaling

factors constitute the core of the approaches in [3], [4]. Though

simple, the aforementioned approaches have the following

disadvantage; they try to preserve circuit performances using

simplified equations and small signal parameters and do not

yield accurate results for the combined small and large signal

behavior of the target circuit.

In the case of simulation-based approaches, a computer

software automates the procedure of simulating parametrized

testbenches and feeding the simulation outputs in an optimiza-

tion algorithm. This approach yields accurate results since the

candidate designs are evaluated with commercial simulators

and they require no further inputs from the designer. In this

category fall the population-based Anaconda [5] and the multi-

start local search method in [6]. The main drawback of these

approaches is the computational cost. They typically require

many evaluations to reach acceptable solutions, which in the

case of analog circuit simulations are time consuming.

Motivated by the above, in this paper we propose a

new method for analog circuit technology migration using

simulation-based evaluation. By using a Bayesian Optimiza-

tion (BO) [7] algorithm as the core of our approach, we are

able to balance the exploration-exploitation tradeoff of the

loss landscape and reduce the number of simulations required.

Also, a Thompson sampling acquisition function is used,

that enables the selection of multiple points for evaluation,

therefore allowing for parallelized simulations to take place.

The proposed approach is applied on two real world circuits

and manages to re-size them from a TSMC 90nm to a TSMC

40nm fabrication technology within minutes.

The paper is structured as follows. Section II formulates

the schematic migration procedure as an optimization problem

and provides with information about its automation. Section

III presents BO and its mathematic foundations, along with

the proposed acquisition function. Section IV demonstrates the

application of the overall approach on a Two-Stage and a Four-

Stage CMOS amplifier. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Consider an already sized circuit in the source technology

which is parametrized by d variables arranged in a vector

x. These variables may include transistor widths, transistor

lengths, capacitances, etc. This circuit provides a set of scalar

978-1-6654-2742-5/21/$31.00 ©2021 IEEE

20
21

 6
th

 S
ou

th
-E

as
t E

ur
op

e 
De

sig
n 

Au
to

m
at

io
n,

 C
om

pu
te

r E
ng

in
ee

rin
g,

 C
om

pu
te

r N
et

w
or

ks
 a

nd
 S

oc
ia

l M
ed

ia
 C

on
fe

re
nc

e 
(S

EE
DA

-C
EC

N
SM

) |
 9

78
-1

-6
65

4-
27

42
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SE
ED

A-
CE

CN
SM

53
05

6.
20

21
.9

56
62

19

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:41:49 UTC from IEEE Xplore.  Restrictions apply. 



performance metrics {P s
i }mi=1

that describe its behavior. Mi-

grating the circuit to a target fabrication technology neces-

sitates the target performance metrics, {P t
i }mi=1

, to be equal

or better than the initial ones. For instance, in the case of an

operational amplifier, DC Gain in the target technology should

be equal or greater than in the source technology (case 1),

whereas power dissipation in the target technology must equal

or less than in the source technology (case 2). To account for

both cases provided above, we introduce a weighting function

W (x) :=

{

−1 for case 1

1 for case 2
. (1)

For the following we assume that the target fabrication tech-

nology is smaller than the source one. Besides the aforemen-

tioned constraints for performance metrics, in our formulation

we explicitly optimize for target circuit power dissipation. We

consider that power consumption, Pdc, is the most important

factor when re-sizing a schematic and opt to exploit any

benefits in terms of low power utilization the target technology

has to offer. The migration procedure can now be formulated

as
min Pdc(x), x = [x1, x2, . . . , xd]

s.t. gj(x) ≤ 0, j = 1, . . . ,m

Li ≤ xi ≤ Ui, i = 1, . . . , d

(2)

where Li and Ui are the lower and upper bounds of the i-th
variable and the j-th constraint is defined as follows

gj(x) = W
(

P t
j (x)− P s

j

)

. (3)

The variable space is S =
∏d

i=1
[Li, Ui] and the degree of

constraint violation for a given x is defined as

CV(x) =
∑

j

max[0, gj(x)]. (4)

The above minimization problem requires circuit perfor-

mances to be computed for different parameter vectors x. The

evaluation is done using the commercial simulator Cadence

Spectre. After the simulation, the performances of each can-

didate parametrization of the circuit in the target technology

are parsed and fed to an algorithm that determines a new

set of candidate vectors, until a certain termination criterion

is met. This simulation-in-the-loop procedure is conceptually

illustrated in Fig. 1.

In our case, the automation procedure is operated by a

software tool written in Python. It implements the optimiza-

tion algorithm (see Section III) and provides an interface to

Cadence Spectre for simulation automation and result parsing.

Furthermore, it utilizes multiple threads and takes advantage of

the batched mode of the simulator, to speed up the evaluation

procedure.

III. BAYESIAN OPTIMIZATION

In this section the BO algorithm for automated circuit

technology migration is presented. Prior to discussing the

functionality of BO, we provide with details about the models

that constitute its core, Gaussian Processes (GPs).

Fig. 1. Simulation-in-the-loop optimization.

A. Gaussian Processes

Consider a variable space S and let X = {xi}Ni=1
be the

inputs in S of an unknown function f : S → R. A GP is a non-

parametric regression model that approximates f . In contrast

to deterministic models, GPs are probabilistic in nature and

provide with uncertainty estimates about their predictions, by

defining a probability distribution over functions in S [9].

GPs are uniquely defined by two components; a mean func-

tion m : S → R and a kernel function k : S×S → R. Consider

N noise corrupted observations from f , y = {yi}Ni=1
, with

yi = f(xi) + ǫi, where ǫi ∼ N (0, σ2

n). In GP regression we

say that f follows a GP

f(x) ∼ GP (m(x), k(x,x′)) , (5)

to denote the probabilistic nature of the model. A fundamental

property of GP models is that vector f = [f(xi)]
N
i=1

follows a

Multivariate Gaussian distribution for any positive integer N ,

such that

f |X ∼ N (µ,K) , (6)

Here, the (N × 1) mean vector is µ = [m(xi)]
N
i=1

and the

(N × N) covariance matrix K is defined such that Kij =
k(xi,xj) + σ2

nδij , where δij is the Kronecker delta.

The mean function m(x) describes the shape of the un-

known function f . In cases when this information is not

available, we set m(x) to zero. The kernel function describes

how similar the outputs of any two input points are. In our

work, we use the Matèrn 5/2 kernel to account for non-smooth

functions,

k(xi,xj) = σ2

(

1 +
√
5r +

5

3
r2

)

e−
√
5r (7)

where

r =

(

d
∑

k=1

(xi,k − xj,k)
2

λ2

k

)1/2

. (8)

The hyperparameters λk, σn and σ are arranged in a vector

θ. To adjust a GP model to the observations y, one must

discover the values of θ by minimizing the negative log

marginal likelihood

L (θ) =
1

2
yTK−1y +

1

2
log (|K|) + N

2
log(2π), (9)

where the size of yT is (1×N ).
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Consider a point x⋆ 6∈ X. To predict f(x) at x⋆, we resort

to the predictive distribution p (f(x⋆)|y). This is a Gaussian

distribution with mean and variance

µf |y(x
⋆) = kTK−1y

σ2

f |y(x
⋆) = c− kTK−1k

. (10)

Here, kT is a (1 × N ) vector with values k(xi,x
⋆) for i =

1, . . . , N and c = k(x⋆,x⋆).
To compute the joint predictive distribution

p ([f(x⋆
1
), . . . , f(x⋆

k)] |y) over k unseen points in S, one uses

a Multivariate Gaussian distribution with mean such as in Eq.

10. The covariance matrix entry between any two points is

given by

Cov(x⋆,x⋆′) = k(x⋆,x⋆′)− kT
X,x⋆K−1kX,x⋆′ , (11)

where the (1×N) vector kT
X,x⋆ = [k(xi,x

⋆)]
N
i=1

.

B. Bayesian Optimization

The BO optimization framework is a model-based approach

to global optimization of black-box functions. It is particularly

useful in cases when the evaluation of the unknown function to

be minimized is time consuming, since it manages to approx-

imate the global optimum by using relatively few evaluations.

This is achieved by using the uncertainty information provided

by the employed GP models to guide the search towards

promising parts of the variable space, by balancing exploration

and exploitation. BO therefore is the most promising approach

to low budget optimization problems and has found numerous

applications in various fields of studies, such as machine

learning and robotics [7].

BO is comprised of two main components; the surrogate

models, which are GPs that approximate the unknown function

f and the constraints functions, and an acquisition function

α (·). Acquisition functions use GP model predictions and

uncertainty estimates to provide with a score of goodness,

or utility score, about any point in the seach domain S. In

particular, acquisition functions such as expected improvement

(EI), probability of improvement (PI) and lower confidence

bound (LCB) [7] make use of pointwise GP distributions to

assign the utility for expensive evaluation to each point in the

search space. Selecting a query point x⋆ for evaluation there-

fore reduces to the maximization of the employed acquisition

function.

The complete functionality of the BO algorithm is shown in

Algorithm 1. Starting from a random sampling of the variable

space and after evaluating the initial samples, an archive of

past evaluations is created and stored in sets X, y. The GP

models that approximate the objective and constraint functions

are trained and then the iterative procedure of optimizing

α (·) and evaluating the query points begins. The procedure

terminates when a certain number of iterations has been

reached.

C. Employed Acquisition Function

The functionality of the basic BO described in Algorithm

1 assumes that the maximization of the acquisition function

Algorithm 1: BO Algorithm

Input : Initial samples Ninit, number of iterations Tmax,
variable space S

Output: Global minimum xbest

1 Create randomly a set X of Ninit initial samples from S

2 Evaluate X to acquire observations y

3 for i = 1, . . . , Tmax do
4 Adjust GP models using Eq. 9
5 x⋆ ← argmax

x∈S
α (x,y)

6 Evaluate x⋆ to acquire y⋆

7 Update archive X← X ∪ {x⋆}, y← y ∪ {y⋆}
8 end
9 Find xbest from X, y

results in a single query point x⋆. In fact, this is the case

for the most popular acquisitions functions such EI and LCB

and constitutes a disadvantage of BO. By relying on a single

query point at each iteration, modern hardware systems that

enable parallelized evaluations of multiple candidate points are

not exploited. In addition, GP training, which is a relatively

time consuming procedure, takes place after each evaluation

rendering the overall procedure time consuming.

Taking the above into consideration, in this work we employ

a parallelizable acquisition function that provides with multi-

ple query points. By examining many points in parallel, we are

able to gather more information in the same time-frame. The

proposed acquisition function is based on Thompson sampling

(TS) [11], which is a randomized selection strategy. Instead of

relying on GP pointwise predictive distributions, TS uses the

joint predictive distributions of the models over a quantization

of the search domain S. To generate the quantization of S,

at each iteration, we use a quasi-random number generator

[12] to produce k candidate points {x}ki=1
. Then, we sample

from the joint predictive Multivariate Gaussian distribution

to produce a sample of the unknown objective or constraint

function modeled by each GP.

To account for the constrained optimization formulation de-

fined in Eq. 2, the query point selection must take into account

the constraint and objective function values simultaneously.

This is done by using the feasiblity rule [8], which compares

the k candidate points in pairs and selects a single one based

on the following

• Feasible candidate solutions are preferred than infeasible

ones

• amongst feasible solutions, the ones with better fitness

function are preferred and,

• amongst infeasible solutions, the ones with the least

constraint violation are preferred.

This procedure extends to multiple query points by simply

drawing Ns > 1 samples from the GP joint predictive

distributions and selecting a single query point from each one

of them. Fig. 2 shows a case where Ns = 30 samples are

drawn from a quantization (40 samples) of the variable space

[3, 7]. The locations of the query points associated with each

sample are also shown.
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Fig. 2. A GP model’s 95% confidence bounds, predictive mean and past query
points are shown here. The true function f along with 30 samples drawn from
the posterior distribution are also shown, with the next query point locations
marked as pink dots.

IV. APPLICATIONS

In this section the BO algorithm desicribed previously is

used to migrate two CMOS amplifiers based on the formula-

tion of Eq. 2. Both circuits are designed in Cadence Virtuoso

in a TSMC 90nm technology, and Cadence Spectre is used

for simulation in the target TSMC 40nm technology. The

experiments were executed on a 8 core linux workstation.

A. Two Stage Amplifier

Fig. 3. Two stage amplifier.

Fig. 3 depicts the topology of the already sized circuit in the

source technology. It consists of a differential input stage with

active load and a common source output stage, with a capacitor

for frequency compensation. For this example, the variables

that parametrize the topology include three transistor lengths

for transistor sets {M8,M5,M6}, {M1,M2}, {M3,M4,M7},

six transistor widths, the capacitance of Cc and the biasing

current. In both technologies it holds VDD = 1.2V.

For this experiment, we examine the following the specifi-

cations: DC Gain, Phase Margin (PM), Unity Gain Frequency

(UGF), average Slew Rate (SRavg) and power consump-

tion Pdc. The variable space S is as follows: the variable

range for transistor lengths is [0.1, 2]um, for transistor widths

[1, 100]um, for Cc [0.5, 5]pF and for Ibias [1, 40]uA. The

golden standard specifications from the source technology are

given in detail in Table I. To acquire these metrics for the

target circuit, two separate testbenches are used, one for AC

and DC analysis and one for transient analysis.

TABLE I
GOLD STANDARD FOR TWO STAGE AMPLIFIER

Performance Metrics Specifications

DCGain 67.46dB

Pdc 107µW

SRavg 3.6V/µs

UGF 15.06MHz

PM 45.9o

VDD 1.2V

For the optimization procedure we use Ninit = 100 initial

random samples and the maximum number of iterations is

500. To speedup the optimization procedure, we derive Ns =
4 query points from the employed acquisition function. The

number of points produced by the quasi-random generator to

quantize the variable space is 2000. The optimization took

approximately 15 minutes and the performances of the circuit

in target technology are given in Table II.

TABLE II
TWO STAGE AMPLIFIER - 40NM PERFORMANCE

Performance Metrics Specifications

DCGain 67.86dB

Pdc 29µW

SRavg 3.71V/µs

UGF 16.05MHz

PM 46.6o

VDD 1.2V

It is seen that the optimization algorithm manages to find

a solution with equal or better performances than the source

circuit specifications. A considerable reduction in power con-

sumption is shown, which is mainly due to the problem

formulation.

B. Four Stage Amplifier

Fig. 4 depicts the Four Stage amplifier [10] examined in

this subsection. It employes an active zero sub-circuit, a slew-

rate enhancer sub-circuit and four gain stages. Similar to the

previous case, we wish to re-size the circuit from a gold

standard version in TSMC 90nm to a new version in TSMC

40nm. Besides the core amplifier shown in Fig. 4, a biasing

sub-circuit which is responsible for Vbn1, Vbn2, Vbp1, Vbp2 is

also included in the testbenches. In total, 35 transistors, 2

capacitors, a single resistor and a current source are employed.

We use two testbenches, one for the slew rate and one for AC

and DC analysis.

In total, there are 43 parameters, which include 20 transistor

widths, 19 transistor lengths, a bias current and CZ , CM and

RZ . Transistor length and width ranges are the same as in the

previous example, the biasing current range is [0.5, 10]µA, the

range of the resistor is [0.1, 300]kΩ and the capacitance range

is the same as in the previous example. The gold standard

performance metrics are shown in Table III.
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Fig. 4. Four stage amplifier of [10].

TABLE III
GOLD STANDARD FOR FOUR STAGE AMPLIFIER

Performance Metrics Specifications

DCGain 102.3dB

Pdc 230µW

SRavg 0.189V/µs

UGF 2.08MHz

PM 49
o

GM 16.3dB

VDD 1.2V

For the optimization procedure we use Ninit = 300 initial

samples and set the maximum number of iterations to 800.

The number of query points per iteration is again Ns = 4.

In this case we used more evaluations than in the previous

example due to the large variable space. The optimization took

approximately 42 minutes to complete and the performance

metrics of the migrated schematic are given in Table IV.

TABLE IV
FOUR STAGE AMPLIFIER - 40NM PERFORMANCE

Performance Metrics Specifications

DCGain 102.76dB

Pdc 109µW

SRavg 0.191V/µs

UGF 2.09MHz

PM 52
o

GM 16.4dB

VDD 1.2V

It is seen that the target circuit surpasses the performance of

the initial design. In terms of power dissipation, there is a drop

in half, which can be attributed to the properties of the target

technology, the problem formulation and the sub-optimality of

the initial design.

V. CONCLUSION

An optimization-based approach to analog circuit schematic

migration was presented in this paper. Using a simulation-in-

the loop approach, we were able to migrate sized circuits from

a source to a target fabrication technology using a dedicated

software platform. The formulation of the migration procedure

as an optimization problem and the BO algorithm employed in

this work were explained. The application of the methodology

on two circuits proved the effectiveness of the approach.
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