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Abstract—Edge detection is an useful tool utilized by various
Computer Vision applications. A prime application example for
locating the spatial edges of an image is to then separate and
identify the included objects. Similarly to most Computer Vision
tools, edge detection is computation hungry, but the whole proce-
dure can be highly parallelized. Therefore hardware application
specific implementations present multiple benefits compared to
traditional central processing unit approaches. To this end, in
this work an implementation of a hardware friendly variation
of the Robert’s Cross operator is presented, that along with the
utilized building blocks achieves a high area and power efficiency.
The edge detector was evaluated on 3 images involving various
different applications, achieving a mean Structural Similarity
Index Metric of 0.75 while requiring 956µm2 per pixel. The
presented edge detector was designed and simulated in a TSMC
90nm CMOS process, using the Cadence IC Suite.

Index Terms—Analog integrated, edge detector, Gaussian func-
tion circuits, low-power architecture, Robert’s Cross operator

I. INTRODUCTION

Computer Vision’s (CV’s) goal is to enable machines to
visualize their surrounding environments in a manner similar
to the human perception [1], [2]. While hearing or other types
of sensing are also included, the most developed part of CV
is related to the human vision. However, real-time automatic
extraction, analysis and process on the huge amount of data
involved in even the simpler CV tasks require unprecedented
performance. So far, engines that manage to partially tackle
this demand include Graphic Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs) or Application Spe-
cific Integrated Circuits (ASICs) [3]. Nonetheless, in battery-
dependent devices that require CV, such as automatic vehicles
or mobile robotic systems [4], ASICs (and especially analog
ASICs) are inevitably superior due to their power and area
efficiency [5]. To this end, a low power and area efficient,
voltage-mode version of the analog integrated image edge
detector proposed in our previous work [6] is presented here.

Unlike in [6], the new edge detector cell is focused in
area efficiency and hence a larger edge detector array can
be directly integrated next to a photodiode array without
increasing the chip area to an impractical size. Also, the
voltage-mode circuit that replaces the previous current-mode
one, greatly improves the sensitivity of the detector while
requiring only a fraction of the previous power consumption.
Both architectures are compared in terms of performance and

the similarity of their results to the ones of a Robert’s Cross
Operator (RCO) implemented in software [7]. The presented
analog edge detector consumes 14nW per pixel, with a pixel
size of 956µm2, achieving an average Structural Similarity
Index Metric (SSIM) of 0.75 [8].

In the literature, except from [6], only a few other works that
involve analog integrated-based image edge detection exist.
Among these works, the one presented in [9] achieves the
best power management along with a very small area per
pixel. Other designs that also focus on the systems efficiency,
implement either current [10] or voltage-mode [11]–[13] con-
volution filters. On the other hand, [14] and [15] focus on
implementing a more accurate algorithm, namely the Sobel
operator for edge detection [16], at the cost of area and power
consumption. Finally, a non-traditional approach is presented
in [17], where a morphological edge detector that utilizes the
erosion and the dilation operators is presented.

The rest of this work is organized as follows. The back-
ground regarding the edge detector and our previous work is
summarized in Section II. The proposed implementation is
discussed in Section III. In Section IV, the simulation results
are presented and compared to our previous work. Finally,
concluding remarks are provided in Section V.

II. BACKGROUND

The RCO detects regions with high spatial frequency in the
diagonal direction, which is similar to the human perception
[7]. Assuming an image with a N×M resolution, xi,j denotes
the light intensity of a pixel (i, j) (in a grayscale image), for
each i < N , j < M . In this case, the RCO approximates the
calculation of the image’s gradient (spatial frequency) zi,j , as
shown here:

zi,j =
√
(
√
xi,j −

√
xi+1,j+1)2 + (

√
xi+1,j −

√
xi,j+1)2.

(1)
However, these calculations require complex circuits to be
derived in analog hardware. Hence, in [6] a hardware-friendly
version of the RCO is presented to facilitate the benefits
of Bump circuits (a type of Gaussian function generation
circuit) [18] in implementing an analog integrated image edge
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detector. In this algorithm, the RCO’s formula, equation (1),
is transformed to:

ẑi,j = 2π · σ2 · N (yi,j∥yi+1,j+1, σ
2) · N (yi+1,j∥yi,j+1, σ

2),
(2)

where N (x∥µ, σ2) is the univariate Gaussian function and is
given by:

N (x∥µ, σ2) =
1√

(2π) · σ2
e−

1
2 ·

(x−µ)2

σ2 . (3)

Here, µ and σ denote the mean value and the variance of the
Gaussian function. Finally, a simple threshold circuit can be
used to derive a binary output (edge/non-edge).

In [6] the basic building block is a Bump circuit that
implements the equation (2). It is composed of two neuron
cells and a symmetrical current correlator biased by a cascode
current mirror [18]. Unlike a typical Bump circuit [18], where
one of the differential pair’s voltage inputs acts as a constant
parameter, there, based on (2), both Iin1 and Iin2 are in fact
inputs to the circuit. These circuit can produce a high quality
and controllable Gaussian curve. However, as it is investigated
in this work, such an increased performance is not necessary
for the RCO to produce significant results.

III. PROPOSED ANALOG EDGE DETECTOR
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Fig. 1: The analog implementation of the RCO is based around a
2-D cascaded Bump circuit. Due to the external bias Vbias the drain
voltage Mp5 is in fact in a semi-digital format (either close to the
positive or negative supply voltage). The quality of this digital format
is further improved through the use of a simple digital inverter.

In this work, we replicate the architecture introduced in [6]
utilizing a far more power and area efficient Bump circuit
[19] as well as replacing the previously implemented threshold
circuit with a much simpler design. It should be noted that
all transistors presented in the following schematics operate
in the sub-threshold domain with power supply rails set to
VDD = −VSS = 0.3V .

A. Edge Detector Architecture

In this work, we utilize Delbruck’s Bump circuit [19]
depicted in Fig. 1. It is composed of a differential pair
and a simple current correlator biased by a simple current
mirror. The differential pair produces two drain currents I1
and I2, similarly to the two neurons in [6], [18]. Given
these sigmoidal currents, the output current produced by the
correlator resembles a Gaussian curve. The bias current Ibias
controls the height of the Gaussian curve and in this topology,
the variance of the Gaussian curve can only be altered by
changing the sizes of the transistors. However, control over the
Gaussian function’s variance is not necessary for the RCO.

41.2mm

23
.2
m
m

Fig. 2: Layout of the simplified RCO cell.

In equation 2, the RCO’s result is calculated as a product
of two Gaussian functions. Bump circuits are selected because
they can efficiently perform multiplication without the use of
additional components. In this case, that two bump circuits
are involved, if we bias the second Bump circuit with the
first Bump circuit’s output current, its output current equals
the product of their individual Gaussian curves [20]. In this
configuration, only the first Bump circuit is biased with a
specified external bias current (Ibias). Unlike in [6], in this
work, in order to reduce the circuit’s footprint, the current
mirrors are removed from the second Bump circuit and its
design is replaced with a PMOS-based one, as shown in Fig.
1.

The threshold circuit is based on the drain voltage of the
transistor Mp5. The set external bias voltage Vbias, ensures
that the drain voltage is either close to the positive or negative
supply voltage, due to the difference in the currents entering
this node. Therefore, the voltage of this node is in fact in a
digital format. However, the quality of this digital output is
not ideal and a simple digital inverter is used to improve it. It
should be noted, that the Vbias can be easily generated using a
single current mirror and the existing Ibias for all the threshold
circuits. Additionally, by changing the bulk voltage of the
transistor Mp5, one can essentially control the threshold value
of the circuit, hence locating more or less edges depending on
the application-in-question. Finally, all transistors’ dimensions
are summarized in Table I.

B. System-Level Architecture

In [6] several system-level architectures were proposed, that
offered different trade-offs between their computation speed
and their area and power efficiency. However, the architectures
that achieved high frame-per-second (FPS) values, which is a
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TABLE I: MOS Transistors’ Dimensions (Fig. 1).

Transistors W/L (µm/µm) Transistors W/L (µm/µm)
Mn1,Mn2 0.4/0.4 Mn5,Mn6 0.4/5.2
Mn3 0.4/1.6 Mn7,Mn8 1.6/5.2
Mn4 1.2/1.6 Mn9 1.2/0.4
Mp1-Mp8 0.4/1.6 - -
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Robert's 
  Cross
     

  P1,1   P1,2

  P2,1   P2,2

  I1,1   I1,2

  I2,1   I2,2

Robert's 
  Cross
     

  P1,3

  P2,3

  I1,2   I1,3

  I2,2   I2,3

 P3,1

Robert's 
  Cross
     

  P3,2

  I2,1   I2,2

  I3,1   I3,2

Robert's 
  Cross
     

  P3,3

  I2,2   I2,3

  I3,2   I3,3

 Δ 

I1,1

 Δ 

I1,2

 Δ 

I2,1

 Δ 

I2,2

Fig. 3: Conceptual system-level architecture, where a multi-cell
analog edge detector is shifted on the entire image.

main purpose of an ASIC-based edge detector, were imprac-
tical in terms of chip area. In this work, the RCO’s cell is
reduced by more that half, as shown by the layout presented
in Fig. 2 and the threshold circuit is almost diminished. To
minimize the fabrication mismatch effects and for various
manufacturing considerations, the layout, shown in Fig. 2,
is designed based on the common-centroid technique and
therefore extra dummy transistors are used. In a system level
implementation, these dummy transistors could be decreased
or replaced with active ones. Additionally, the gaps that are
visible in this layout can be filled by either integrating the
photodiodes and/or multiple cells next to each other, achieving
an even greater reduction in total chip area. Therefore, archi-
tectures like the one presented in Fig. 3 can include tenths of
RCO cells before reaching an impractical size.

IV. SIMULATION RESULTS

In this Section, a comparison between two analog integrated
implementations (this work and our previous related one
[6]) and a software implementation of the RCO in various
different images is provided. Both analog architecture and their
simulations results are conducted in a TSMC 90nm CMOS
process, using the Cadence IC suite.

To account for various different applications, the compari-
son is taking place over 3 different images regarding human
skin detection, road navigation and satellite image processing.
The produced binary images for all three implementations are
shown in Fig. 4. Similarly to our previous work, 3 figures
of merit are used to highlight the benefits of the proposed
design; the Structural Similarity Index Metric (SSIM), the
layout area per pixel (LAP) and the power consumption per
pixel (PCP). Table II summarizes these results, excluding the
LAP and PCP metrics that are invariant of the selected image
and are included in table III. However, the quality of the
images generated by the analog circuits can also be assessed
visually by inspecting the areas that the human perception
would identify as "edges". It is evident that regardless of the

proposed simplifications on the RCO cell, both designs capture
the anticipated areas of interest with similar accuracy.

TABLE II: Performance Summary for Analog Edge Detectors

Image Design Resolution SSIM Total Power
Consumption

Satellite [6] 544× 593 0.76 10.9mW
Satellite This work 544× 593 0.61 4.5mW

Road [6] 356× 533 0.90 6.4mW
Road This work 356× 533 0.82 2.7mW

Moles [6] 239× 450 0.86 3.7mW
Moles This work 239× 450 0.81 1.5mW

Finally, a Monte-Carlo analysis for N = 200 points is
conducted to test the circuit’s sensitivity in PVT variations.
In particular, the subject-under-test is the circuit’s threshold
boundary which is translated to voltage difference between
to diagonal pixels. The mean value of this distance under
PVT variations is µ = 50mV with a standard deviation of
σ = 5.5mV. As expected this work is a lot less sensitive in
PVT variations than our previous one [6].

Since the aim of this work is to minimize the LAP and PCP
metrics (while maintaining a high quality product), a compar-
ison between this work and other analog edge detectors that
exist in the literature is provided in Table III. Unfortunately,
the quality of the produced image cannot be assessed fairly.
The proposed work outperforms the rest in terms of PCP and
in maximum possible FPS when a fully parallel architecture is
employed. However, despite the reduction in chip area, there
are still other works that require an even smaller footprint.

TABLE III: Performance Summary for Analog Edge Detectors

ref. Technology Supply PCP LAP FPS
Voltage

This work 90nm 0.6V 14nW 956µm2 100K

[6] 90nm 0.6V 33nW 2392µm2 100K

[17] 0.5µm 1.8V 0.368mW 8600µm2 N/A

[14] 150nm 1.8V 790µW 140µm2 75

[15] 0.35µm 3.3V 26.8µW 1125µm2 2000

[10] 0.6µm 1.8V 3.6µW 100µm2 50

[11] 0.35µm 3.3V 5.8µW 1125µm2 N/A

[12] 250nm N/A 1.2µW 633µm2 N/A

[9] 180nm 1.8V 0.9µW 225µm2 1300

V. CONCLUSION

An analog edge detector was presented in this work,
achieving an area per pixel that allows for highly parallel
architectures which can process even high definition images.
In a fully parallel configuration the proposed edge detector
can process images at rates as high as 100 K FPS, consuming
only 14nW per pixel. This was mainly achieved due to the
utilized voltage-mode and area-efficient Bump circuit. Because
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Fig. 4: Images provided by: Left: the software-based edge detector. Center: the analog circuit-based edge detector presented in [6] Right:
the analog circuit-based edge detector proposed here.

of various test constraints, 3 medium resolution images that
involve different Computer Vision applications were used to
evaluate the proposed architecture. Simulation results con-
ducted in a TSMC 90nm CMOS process, confirm the quality
of the produced "edge" images. Concluding, the presented
architecture is a prime candidate as a pre-processing block
in many CV related systems that require edge detection.
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