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Abstract—Bank note authentication devices are used widely
in many large scale stores and companies. Their main focus is
to accurately detect all the forged bank notes regardless of a
few false alarms on genuine ones. In this work, a low power
(210nW ), area efficient (0.057mm2), analog threshold classifier
is proposed to operate as a bank note authentication circuit. The
architecture consists of bump and Winner-Take-All circuits. A
real-world bank note authentication dataset is used to confirm
the proper operation of the proposed classifier, via post-layout
simulations in a TSMC 90nm CMOS process, using the Cadence
IC Suite. The achieved recall (91.0%) indicates that the classifier
is capable of detecting forged bank notes successfully.

Index Terms—Analog VLSI implementation, Area-Efficiency,
Bank Note Authentication, Low-Power design, Threshold Classi-
fier

I. INTRODUCTION

Internet of things (IoT) devices capture and create various
forms of sensor data such as images and videos. All these
devices can be used in a variety of applications which contain
information on all aspects of human production and life [1].
Using machine learning (ML) in live applications such as
real-time image recognition requires flexible systems and a
lot of model training. A rising research topic in IoT domain
is Computer Vision, in which information is extracted from
images and videos [2]. Machines are able to use computer
vision technologies in combination with sensors or actuators
and a high accurate software to achieve image recognition. In
practice, one or more concepts in an image are recognised by
a trained neural network.

Various ML algorithms, offering different accuracy and
complexity, have been proposed to tackle the challenges of
image classification [2]. Since most image recognition tech-
niques are constrained in terms of processing power, latency
and resources, new computing paradigms are necessary. A
promising solution is edge computing which pushes processing
capabilities closer to the sensor [3]. This solution is critical in
applications in which real-time measurements are necessary
such as autonomous vehicles, surgical devices, obstacle detec-
tion etc [4]. However, this solution reduce the data transfering
(minimizing the energy needed for data transferring), but it
can consume a high amount of energy.

All these related applications are in many cases imple-
mented by battery and area depended devices [5]. Combining
edge [3] and analog computing [6] is an alternative solution

since the information processing is based on physical laws
with area efficient circuits. This combined with sub-threshold
techniques results in more power efficient systems [7]. Given
the need for area and power efficient devices and motivated
by their increased computation requirements, we propose an
analog integrated, low-power, area efficient threshold classifier
for general purpose banknote authetication applications. The
classifier is designed in TSMC 90nm CMOS process and
tested in a real-world banknote authetication dataset [8],
compared with a software based implementation.

The remainder of this paper is organized as follows. The
mathematcial background regarding the proposed analog inte-
grated threshold classifier are explained in Section II. In Sec-
tion III, the main building blocks and the proposed architecture
are presented. A real-world banknote authetication dataset is
used to confirm the proper operation of the proposed classifier
in Section IV. A comparison between hardware and software
implementation and sensitivity tests are also provided. Some
concluding remarks are given in Section V.

II. THRESHOLD CLASSIFIER

A threshold classifier is a simplified version of a Support
Vector Machine [9]. In practice, it utilizes a multivariate non-
linear transformation (f()) to render two, previously inter-
twined, classes as linearly or almost linearly separable. Then,
by tuning a threshold value (Ith), it manages to distinguish
them as shown in:

y =

{
1 if f(X) ≥ Ith

2 if f(X) < Ith
, (1)

where y is the prediction of the classifier and X is a given
input vector. This simple architecture is preferable in hardware
implementations since it minimizes chip area in the cost
classification accuracy.

In our implementation, f() is chosen to be a sum of
multivariate Gaussian function, given by:

f(X) =

K∑
k=1

1√
2πσk

e
(X−Mk)2

Σ2
k . (2)

Here, K is the number of the selected Guassian functions, Mk

and Σk are the mean value and covariance matrices of the k-
th Gaussian, respectively. The Gaussian function is preferred
over other alternatives due to its ease of implementation.
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III. PROPOSED ARCHITECTURE

The topology of the analog threshold classifier along with its
basic building blocks is presented in this Section. In particular,
the multivariate Gaussian functions are implemented using
a multivariate Bump circuit [10]. The comparison with the
threshold value is accomplished using a Winner-Take-All
circuit [11]. The entire classifier operates with the supply
voltage set to VDD = −VSS = 0.3V and all transistors are
biased in the sub-threshold region.

Bump 1

VDD
Ibias VDD

VDD

VSS

VSS

IbiasVin
Vr
Vc

Iout

Vin1
Vr1
Vc1

Bump 4

VDD

VDD

VSS

VSS

IbiasVin
Vr
Vc

Iout

Vin4
Vr4
Vc4

Iout4

Iout3

Iout1

Fig. 1: A multivariate (4-D) Bump circuit composed of 4 univariate
Bump circuits connected sequentially. The output of each Bump
circuit is used as a bias current for the next one. The output of the
last Bump circuit corresponds to the produced Gaussian curve.

Multivariate Bump circuits produce a multivariate Gaussian
function in which the mean value matrix is electronically
tuned. In some architectures a diagonal covariance matrix can
also be altered, affecting the width of the Gaussian function. In
this work, the topology implementing a 4-D Gaussian function
is presented in Fig. 1. It is composed of 4 identical univariate
Bump circuits, connected in a cascaded form [10]. Each Bump
circuit, shown in Fig. 2, is fully electronically tuned and
therefore the multivariate one is also fully tuned. This allows
for full control over the non-linear transformation function in
eq. 2. The transistors’ dimensions for one Bump circuit are
summarized in I.

TABLE I: MOS Transistors’ Dimensions (Fig. 2).

NMOS W/L
(µm/µm)

PMOS W/L
(µm/µm)

Mn1,Mn4 1.6/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.8/0.4 Mp3-Mp6 0.4/1.6
Mn5-Mn8 0.4/1.6 - -
Mn9,Mn10 1.6/1.6 - -

The utilized WTA circuit indicates the index of its largest
input, hence performing the argmax operator. In the case
of a 2-input WTA circuit, shown in Fig. 3, its operation is
similar to a comparator. Specifically, by biasing its second
input with a constant (threshold) current, the WTA circuit is
equivalent to a current-mode comparator. This block is crucial
to a threshold classifier, since it is responsible for extracting
the classifier’s prediction. All transistors’ dimensions are set
as W/L = 0.4µm/1.6µm.

The proposed threshold classifier, presented in Fig. 4, uses
a sum of k = 2 Gaussian functions for the non-linear trans-
formation. This is implemented using 2 multivariate Bump
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Fig. 2: A differential difference pair Bump circuit. The voltage
parameters Vr and Vc and the bias current Ibias control the mean
value, the variance and the height of the produced Gaussian curve
(Iout), respectively.
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Fig. 3: A WTA circuit with 2 inputs and 2 outputs. Its operation is
similar to a current-mode comparator.

circuits and then simply adding their output currents. This
summation is then compared to the threshold current Ithreshold
and the classifier’s prediction is in fact the WTA’s first output
current (I1). This current is in a binary format; a logical 1
(a high current value) indicates the first class as the winning
one and a logical 0 (a low current value) the second one. This
design is easily scalable for any number of Gaussians and/or
dimensions.

IV. BANK NOTE AUTHENTICATION DATASET

To test the threshold classifier, a real-world bank note au-
thentication dataset was used [8]. The data include genuine and
forged bank notes from the University of Applied Sciences,
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Fig. 4: The proposed threshold classifier. It is comprised of 2 multi-
variate Bump circuits, performing the non-linear transformation, and
1 WTA circuit acting as a current-mode comparator. The Ithreshold
controls the decision boundary of the classifier.

Ostwestfalen-Lippe. They are recorded using a simple camera
and 4 image related features are extracted and used to train
a software-based model, which is identical to the analog one.
This model’s parameters are then imported to the analog circuit
for its validation. On the following, two tests, validating the
classifier’s accuracy and the circuit’s stability, are presented.
Both of them are conducted on the layout presented in Fig.5.

First, the hardware implementation is compared to the
aforementioned software one. Since identifying all the forged
banknotes is of vital importance, the comparison is also based
on the classifiers recall, given by:

recall =
Identified FBN

Identified FBN +Unidentified FBN
, (3)

where, FBN stands for Forged Bank Notes [12]. To account
for the experiment’s randomness, the results from 20 different
training-test iterations are presented in Figs. 6 and 7. The
circuit’s sensitivity is confirmed via a Monte Carlo analysis
on its layout. In particular, Fig. 8 corresponds to the Monte
Carlo Histogram for N = 200 points. The results for both
tests are also summarized in Table II.

23
4 

μm

242 μm

Fig. 5: The layout of the implemented classifier

V. ANALOG CLASSIFIERS SUMMARY AND DISCUSSION

In Table III, a performance summary that includes both
model and circuit related parameters is presented. Using Bump

Fig. 6: Comparison between hardware (post-layout simulation) and
software implementations over 20 iterations for the proposed classi-
fier, regarding the classification recall.

Fig. 7: Comparison between hardware (post-layout simulation) and
software implementations over 20 iterations for the proposed classi-
fier, regarding the classification accuracy.

TABLE II: Performance Results for the 2 conducted tests.

Method Best Worst Mean Std.

Software (recall) 0.944 0.893 0.919 0.017
Proposed (recall) 0.940 0.874 0.910 0.017

Software (accuracy) 0.920 0.864 0.894 0.013
Proposed (accuracy) 0.823 0.765 0.795 0.015
Monte Carlo (recall) 1.000 0.820 0.922 0.027

Fig. 8: Post-layout Monte Carlo sensitivity analysis histogram for
N = 200 points, regarding the classifier’s recall score.

circuits as their main building block, a Gaussian Mixture
Model (GMM)-based classifier [13], Support Vector Machines
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TABLE III: Analog ML Algorithm Summary.
* No. of dimensions designed on the layout.

Technology Classifier No. of
dimensions

Power
Consumption

Energy per
classification

Area

This
work

90nm Threshold 4 210nW 2.5 pJ
classification

0.057mm2

[13] 90nm GMM *16 12.0µW 96 pJ
classification

0.451mm2

[14] 0.5µm SVM N/A 5.9mW 460 pJ
sample

9.000mm2

[15] 180nm SVM 2 220.0µW 252 pJ
vector

0.060mm2

[16] 0.5µm SVM 14 840.0nW 21 nJ
classification

9.000mm2

[17] 90nm Bayesian 5 365nW 2.15 pJ
classification

0.030mm2

[18] 90nm GRBFN 7 112 ∼ 520nW 0.66∼3.1 pJ
classification

0.050mm2

[19] 180nm K-means 2 1.53µW N/A 0.951mm2

[20] 180nm LSTM 16X16 460.3mW N/A 9.990mm2

(SVM) [14]–[16], a Bayesian classifier [17], a Gaussian
Radial Basis Function Network (GRBFN) [18], a K-means-
based classifier [19] and a Long Short-Term Memory network
(LSTM) [20] have been proposed in literature. The main
criteria for selecting a specific model/network is the trade-
off between accuracy and system complexity or resources. In
this work, we focus on the power and area efficiency, while
maintaining a reasonable accuracy. To this end, we proposed
a low-power (210 nW ), area efficient (0.057mm2), analog
threshold classifier.

VI. CONCLUSION

An analog integrated, low power, area efficient threshold
classifier was proposed in this work. Its main building blocks
are bump circuits along with a current-mode comparator (WTA
circuit). A real-world bank note authentication dataset was
used to validate the classifier’s performance. All post-layout
simulation results are conducted in a TSMC 90nm CMOS pro-
cess and are compared with a software-based implementation.
Its sufficient recall allows for its operation as either a stand
alone device or a wake up circuitry, when a need for higher
security is required.
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