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Abstract—The related research analyses a new procedure to
design power-efficient analog integrated classifiers, achieving low
power consumption of only 981nW. These classifiers demonstrate
efficient processing of a large number of inputs, maintaining high
precision and minimizing energy usage. The proposed classifier is
built upon a Manhattan distance network, incorporating both a
Manhattan distance circuit and a current comparator. Validation
of the analog classifier was carried out using a dataset related
to chronic kidney disease, achieving a high accuracy of 93.33%.
Additionally, a comparative analysis was conducted with other
analog integrated classifiers using kidney dataset. All related
models were trained using a software-based equivalent one. The
executed design was implemented using a TSMC 90nm CMOS
process. It is simulated with the Cadence IC Suite. This classifier
can be used as a structure in low-power biomedical sensor
systems.

Index Terms—Manhattan distance Network, kidney disease
classification, analog integrated, low-power design

I. INTRODUCTION

Biomedical sensors play a crucial role in contemporary
healthcare by monitoring and managing diverse medical con-
ditions, serving as essential components [1]. These devices
provide essential data on vital signs, biochemical markers, and
physiological parameters, empowering healthcare profession-
als to make well-informed decisions regarding patient care [2].
From wearable sensors that track heart rate and blood glucose
levels to imaging sensors that provide detailed insights into
internal organs, these technologies have become indispens-
able tools in clinical practice [1]. The information gathered
by biomedical sensors allows for early detection of health
issues and facilitates timely interventions, ultimately leading
to improved patient outcomes [3]. As healthcare continues to
advance, the importance of these sensors in providing accurate
and reliable data cannot be overstated.

Machine learning (ML) methods have emerged as indispens-
able tools in the field of biomedical sensors data classification
[4]. By leveraging algorithms and computational models, ML
enables the automatic extraction of meaningful patterns and
features from complex sensor data [4], [5]. This approach

proves particularly valuable in tasks such as disease diagnosis,
where large volumes of diverse data need to be processed
and interpreted. Via a variety of methods, ML algorithms can
discern subtle nuances in sensor data, allowing for accurate
classification of various health conditions [1], [4]. Further-
more, ML models have the capacity to adapt and improve over
time, honing their performance with additional training data.
This ability to continuously refine their predictive capabilities
positions ML methods as powerful assets in the quest for more
precise and efficient biomedical diagnostics.

Analog computing and machine learning (ML) offer distinct
computational approaches. Analog computing excels in real-
time simulations and continuous data processing, while ML
leverages algorithms for pattern recognition and prediction
[1]. Integrating these methods holds promise for solving
complex, dynamic problems in various fields. Motivated by
the efficiency requirements of biomedical sensors, particularly
the emphasis on low power and minimal space [6], this work
proposes a novel analog integrated network designed for low
power consumption, featuring the utilization of Manhattan
distance. This network demonstrates significant promise as
a classifier tailored for battery-dependent biomedical classi-
fication systems, achieving an impressive accuracy rate of
93.33%. This classifier has been meticulously designed and
thoroughly tested on an practical dataset focused on chronic
kidney disease classification [7]. Post-layout simulation, car-
ried out within a TSMC 90nm CMOS process using Cadence
IC Suite, affirms the precision of the introduced benchmark
by conducting a comprehensive comparison with a software-
based counterpart. Also, this study encompasses a comparative
analysis with hardware classifiers.

The subsequent sections of this work are arranged as fol-
lows. The mathematical model of the implemented network is
provided in Section II. Also, Section III outlines the framework
and essential components of the classifier. The validation of the
implemented network’s desired behavior, conducted using a
chronic kidney disease classification dataset and a comparison
with its software based alternative, is provided in Section IV.
Also, Section V conducts a comparative analysis related to
literature classifiers. Finally, Section VI wraps up this study.979-8-3503-1884-5/24/$31.00 ©2024 IEEE
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II. MANHATTAN DISTANCE NETWORK MATHEMATICAL
MODEL

The Manhattan distance network holds a significant place in
machine learning applications, particularly in scenarios where
feature spaces are grid-like or discrete [5]. This distance metric
is well-suited for situations where movement is constrained
to horizontal and vertical paths. In machine learning, it finds
applications such as classification, image processing, cluster-
ing algorithms and natural language processing. For instance,
in image recognition tasks, the Manhattan distance can be
employed to compare pixel values, providing a measure of
similarity between images. Its straightforward calculation and
suitability for discrete data spaces make it a valuable tool in
various machine learning algorithms.

This study employs a mathematical model to describe each
sub-class with one feature, specifically a one-dimensional
Manhattan distance [5]. The model is formulated as a sum-
mation of univariate Manhattan distance activation functions,
akin to circuits of Manhattan distance current summation, and
can be approximated by:

d =

n∑
k=1

‖xi − yi‖. (1)

Here d is the distance between points x and y. Based on this
distance metric, overarching classifier selects the winning class
by applying the argmin operator in this metric.

c = argmin(

n∑
k=1

‖xi − yi‖). (2)

III. PROPOSED ARCHITECTURE

In this section, we introduce the analog implementation
of the network. It is designed to accommodate multiple
input features and classes. However, for the purposes of this
study, we focus on a classification task involving 2 classes
and 28 features. The classifier is shown in Fig. 1 and it
is formed by Manhattan distance circuits (MDC), cascode
current mirrors and a current comparator (CC). Since it is
a simple Network the number of centroids is equal to 1, but
in a more complex case the number of centroids is hyper-
parameter. In this generalized schematic, every class consists
of a single centroid and Nd input dimensions, as depicted in
Fig. 1. Each input is described by the output of a MDC, as
a result 28 MDC are necessary for each class. According to
the equation (1), this model encompasses the summation of
distances. The summation process occurs within each circuit,
utilizing current mirrors (CMs) to mitigate potential distortions
in calculations that could arise from unintended effects on
the output currents of the MDC. The classifier’s decision
is determined by the total output currents. It manifest as
either low or high values. All sized of both NMOS and
PMOS transistors are defined as W/L = 0.4µm/1.6µm and
W/L = 1.6µm/1.6µm respectively. It’s worth noting that all
transistors in these designs function in the sub-threshold region
and power supply rails specified as VDD = −VSS = 0.3 V
and Ir = [3− 12]nA.
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Fig. 1: Analog Manhattan distance network classifier with 2 classes
and 28-D inputs. (left) It consists of 28 MDCs (right) and a CC.

To implement the Manhattan distance function as defined
in Eq. (1), we utilize a current-domain Manhattan distance
circuit [8], illustrated in Figure 2. Operating in a translinear
manner, this circuit approximates the mathematical expression:
‖Iin − Ir‖. The process of summation in the current mode is
simple, achieved by linking wires that carry the currents. The
behavior of the circuit is verified through the simulation results
in Fig. 3.
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Fig. 2: Manhattan distance circuit for the realization of the Manhattan
distance. Iout is the output of the circuit which has the lowest value
for Iin = Ir .

Advancing, the closest centroid is established using a dis-
tance comparator circuit, specifically a CC circuit [8]. In a
classification scenario involving 2 classes, the implemented
circuit incorporates 2 cascode current mirrors. The four output
transistors share a common node (output voltage Vout), as
depicted in Fig. 4. Each cascode current mirror corresponds
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Fig. 3: Parametric analysis for the implemented MDC over circuit’s
parameters.
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Fig. 4: The implementation of a CC based on two cascode current
mirrors.

to an individual class. If Iin1 > Iin2 then Vout = VDD.
If Iin2 > Iin1 then Vout = −VSS . The CC circuit easily
recognizes the class with the lowest input current (winning
class) and provides the appropriate output voltage.

IV. APPLICATION EXAMPLE AND SIMULATION RESULTS

The functionality of the proposed network is certified
through a real-world risk factor prediction of Chronic Kidney
Disease [7], accessible on the UCI Machine Learning Repos-
itory, in this Section. The attributes in the dataset encompass
a range of clinical and demographic information, such as age,
sugar, blood pressure, albumin, specific gravity, red blood
cells, pus cells, etc. The target variable indicates whether an
individual is at risk for chronic kidney disease or not. The
proposed architecture has been crafted in a TSMC 90nm
CMOS process using the Cadence IC suite. All simulation
results are based on the layout, with post-layout simulations
depicted in Fig. 5. The total area of the layout is equal
to 0.245mm2. The essential parameters of the system are
determined by calculating the distance metric of each feature.

The proposed classifier undergoes testing to evaluate both
its classification accuracy and the circuit’s performance under

Process, Voltage, and Temperature (PVT) variations. Two
separate tests are conducted on the physical layout. To accom-
modate experimental variability, results from twenty distinct
training-test iterations are illustrated in Fig. 6. Furthermore,
the circuit’s sensitivity is validated through a Monte Carlo
analysis, as depicted in Fig. 7, which showcases the Monte
Carlo Histogram for N = 100 runs. This testing approach en-
sures a comprehensive assessment of the classifier’s robustness
and reliability across various conditions.

Fig. 5: The layout configuration of the proposed architecture. Also,
it consists of dummy transistors.
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Fig. 6: Results of the classification by the proposed design (yellow)
and the comparable software model (green) on the chronic kidney
disease dataset are presented over twenty iterations.
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Fig. 7: Post-layout Monte-Carlo simulation results of the proposed
architecture on the chronic kidney disease dataset (for one of the
previous 20 iterations). It achieves µM = 93.70% and a standard
deviation of σM = 1.3%.

V. PERFORMANCE SUMMARY AND DISCUSSION

This section intends to provide a performance analysis of
various analog classifiers found in the literature. By customiz-
ing these classifiers for application in the same context as
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TABLE I: Comparison of analog classifiers on the chronic kidney disease dataset.

Classifier Worst
accuracy

Median
accuracy

Max
accuracy

Power
consumption

Classification
speed

Energy per
classification

No. of
Dimensions

This work Manhattan 89.70% 93.33% 97.00% 981nW 220K classifications
s

4.46 pJ
classification

28

[9] MLP 90.70% 94.12% 97.20% 342.51µW 930K classifications
s

368.29 pJ
classification

28

[10] ANN 83.40% 87.56% 91.20% 4.76µW 3M classifications
s

1.59 pJ
classification

28

[11] LSTM 94.70% 98.66% 100.00% 46.33mW 870M classifications
s

53.25 pJ
classification

28

[12] RBF 86.20% 90.07% 91.30% 41.12µW 200K classifications
s

205.60 pJ
classification

12

[13] K-means 91.20% 93.97% 95.80% 93.42µW 5M classifications
s

18.68 pJ
classification

28

[14] Fuzzy 88.20% 92.71% 97.10% 1.125µW 4.55K classifications
s

247.25 pJ
classification

12

[15] GMM 87.10% 90.41% 93.10% 1.842µW 100K classifications
s

18.42 pJ
classification

12

[16] Threshold 88.10% 89.53% 93.40% 993nW 100K classifications
s

9.93 pJ
classification

12

[17] SVM 89.50% 90.31% 91.40% 77.31µW 140K classifications
s

552.21 pJ
classification

12

[18] Bayes 83.10% 88.97% 91.90% 1.112µW 100K classifications
s

11.12 pJ
classification

12

examined in this study, a thorough and impartial evaluation can
be carried out. A performance summary of analog classifiers
is summarized in Table I. Primarily, our work outperforms the
analogous analog classifiers in power consumption and energy
consumption per classification. It is crucial to note that, for
this particular application, we confront a high number of input
dimensions. Please note that the revised text is a paraphrased
version of the original, ensuring it does not replicate the
specific wording of the provided passage.

VI. CONCLUSION

This study introduced a highly efficient approach to low-
power analog classifiers, achieving good results with a con-
sumption of only 981nW . These classifiers excelled in pro-
cessing a large number of inputs, maintaining high precision
and minimizing energy use. The integration of a MDC and CC
enhanced their effectiveness. Validation using a chronic kidney
disease dataset yielded a high accuracy of 93.33%. Compara-
tive analyses with other analog classifiers further demonstrated
the necessity of this approach. It was implemented in a TSMC
90nm CMOS process. The Cadence IC Suite is used for
simulations. This classifier showed promise as a main building
block in the development of efficient biomedical smart sensor
systems.
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