
An Analog Integrated, Low-Power, Area-Efficient,
Gilbert, Modulo-based Classifier with Application

to Lung-Cancer Classification
Vassilis Alimisis, Nikolaos P. Eleftheriou, Savvas Leventikidis and Paul P. Sotiriadis

Department of Electrical and Computer Engineering
National Technical University of Athens, Greece

E-mail: alimisisv@gmail.com, eleftheriou_nikos@hotmail.com, savvas01@yahoo.gr, pps@ieee.org

Abstract—This study presents an alternative approach to de-
velop low-power (744nW) analog classifiers capable of efficiently
handling multiple input features while maintaining high levels
of accuracy and minimizing power consumption. The proposed
classifier relies on Voting and Bayes mathematical models,
incorporating Gilbert two-signal four-quadrant multipliers and
current comparators. The analog classifier is validated through
testing with a real-world lung-cancer surgery dataset, achieving
an accuracy of 75.45%. It predicts all testset samples of patients
suffering from lung-cancer. Additionally, a comparison with
related analog classifiers using the same dataset is conducted.
The models are trained via a software-based implementation.
The proposed architecture is realized using the TSMC 90nm
CMOS process and simulated using the Cadence IC Suite.

Index Terms—Modulo-based classifier, Lung-cancer classifica-
tion, low-power design, analog VLSI implementation

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has
given rise to a variety of devices and sensors, many of
which operate solely on batteries, making efficient power man-
agement crucial [1]. IoT devices find application in various
consumer and industrial sectors, some of which lack online
recharging capabilities. To address this, hardware designers
are increasingly turning to innovative power management
solutions.

A notable emerging trend involves integrating IoT appli-
cations with Machine Learning (ML) algorithms to extract
valuable insights from real-time data [2]. In pursuit of real-
time computation, a new domain is emerging, leveraging ad-
vanced computation methods like edge computing and analog
computing. Edge computing [3] processes data as close to the
source as possible, enhancing speed and efficiency. Analog
computing [4] aligns more closely with the continuous nature
of physical laws, often requiring fewer components compared
to digital circuits. Additionally, analog circuits, by operating
in the sub-threshold region [5], significantly reduce power
consumption.

Recent advancements in wireless remote medical devices
have sparked interest in monitoring various physiological
parameters related to human health conditions with a focus
on portability, particularly through wearable architectures [6].

Motivated by the demand for low-power and low-area so-
lutions in analog computing for ML and IoT applications,
an efficient, high-speed analog Bayesian classifier designed
for lung-cancer classification is introduced. The proposed
classifier has been rigorously tested on a real-world lung-
cancer surgery dataset [7].

The remainder of this paper is organized as follows. Section
II refers to a brief presentation of classifier’s mathematical
model. The proposed architecture and the basic building blocks
of the proposed classifier are described in Section III. The
proper behavior of the proposed classifier is confirmed via
a real-world lung-cancer classification dataset and compared
with the software-based implementation in Section IV. Section
V provides a comparison study with related analog classifiers.
Some concluding remarks are given in Section VI.

II. MATHEMATICAL MODELLING

The Naive Bayes classifier is a straightforward probabilistic
classification method that applies Bayes’ theorem while as-
suming independence between input features [8]. Even with
this assumption, it can achieve impressive accuracy when com-
bined with kernel density estimation. By employing Bayes’
theorem, the conditional probability of a vector input X
belonging to a class Ck is expressed as:

p(Ck|X) =
p(Ck)p(X|Ck)

p(X)
. (1)

In this context, p(Ck) represents the prior probability of class
k, p(X) denotes the evidence probability of the input X ,
and p(X|Ck) signifies the value of the probability density
function (PDF) of class k for the input X . Specifically, for a
multivariate Gaussian PDF with a diagonal covariance matrix,
as assumed by the Bayesian model, p(X|Ck) is defined as:

p(X|Ck) =

N∏
n=1

1√
(2π) · σ2

kn

e
− 1

2 ·
(xn−µkn)2

σ2
kn . (2)

In this context, N represents the number of features, leading
to the generation of N−d Gaussian functions. Parameters µkn

and σkn denote the mean value and variance corresponding to
the n-th feature of class k respectively, while xn stands for the
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n-th feature of the input vector X . The final decision for the
winning class is taken by applying the argmax operator to the
probabilities p(Ck|X) for all classes. In practical application,
the evidence probability is often disregarded, and the output
of the classifier can be described as:

y = argmax{p(Ck|X)} = argmax{p(Ck)p(X|Ck)}. (3)

for k ∈ {1, 2, ...,K}.
In this study, to represent each sub-class using a single

feature (a 1 −D cell), the mathematical model is articulated
through a voting classifier [9], which can be approximated as:

y = mod{(C1(X), C2(X), C3(X), ...CK(X)}. (4)

In this context, Ck(x) signifies the output of each 1-D
Gilbert decision cell (GDC), essentially representing each sub-
classifier. To further illustrate this concept, let’s consider a
scenario with five features involved in a binary classifica-
tion task, each carrying equal weight. The functions C1(x),
C2(x), C3(x) collectively yield the output for the first class
(class 1), while C4(x), C5(x) produces the output for the
second class (class 0). Consequently, the result is calculated
as y = mod(1, 1, 1, 0, 0) = 1 (indicating class 1).

III. PROPOSED ARCHITECTURE

In this section, the proposed architecture of the analog
classifier along with its basic building blocks is presented.
Since it can accommodate various numbers of classes and
input dimensions, it is scalable and provides high versatility.
Firstly, for the realization of GDC in equation (4), Gilbert
two signal four-quadrant multipliers (Gilbert cells) [5] along
with current comparators (Winner-take-all circuit) [10] are
employed, as shown in Fig. 1. Transistors Mn1-Mn4 and
Mn7-Mn10 implement the two Gilbert cells and transistors
Mn5, Mn6, Mn11 and Mn12 implement the Winner-take-all
(WTA) circuit. The GDC circuit operates in a translinear
fashion, producing two decision output currents that signify
the decisions for each feature in both classes. In this context,
a higher current indicates the winning class.

✁ ✁

Mn4Mn3

VSS VSS VSS

VDD

Mn2Mn1
Io1

Vin

Mn10Mn9

VSS

Mn8Mn7
Io2

✄ ☎
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✟Mn11

Mp1 Mp2
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VDD

Mp4

Ibias
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VSS

Mp3

Vm1 Vin Vm2

Fig. 1: The implementation of the GDC circuit. It consists of Gilbert
two signal four-quadrant multipliers (Gilbert cells) along with current
comparators. Here Vin is the input voltage and Vm1 and Vm2 are
parameters describing the mean values of each function. The output
current represents the decision according to a specific feature.

The architecture of the proposed classifier, as shown in
Fig. 2, is designed for a classification problem involving

Ncla = 2 classes and Nd = 16 features (input dimensions).
This illustration consists of 16 GDC circuits (input dimen-
sions) and one WTA circuit (modulo implementation), shown
in Fig. 2. Each GDC circuit describes the voting strength
for each class regarding a specific feature. It produces two
output currents, each one represent a feature’s decision. All the
currents related to one class are summed via current mirrors
(CMs) to minimize potential distortions in calculations that
might arise from undesired effects on the output currents of
the GDC. The resulting output currents, distinguished by their
high or low values, indicate the classifier’s final prediction.
All transistor dimensions are set to W/L = 1.6µm/1.6µm.
The power supply rails set as VDD = −VSS = 0.3 V and
all transistors operate in the sub-threshold region in order to
achieve low power consumption.
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Fig. 2: The proposed classifier’s top-level architecture.

IV. LUNG-CANCER DATASET AND SIMULATION RESULTS

In this section, the effectiveness of the proposed classifier
using a real-world dataset related to lung-cancer [7] is chal-
lenged. The proposed architecture has been implemented in the
TSMC 90nm CMOS process, employing the Cadence IC suite.
All the simulation tests are conducted on the layout (post-
layout simulations) illustrated in Fig. 3. This classification
task revolves around lung-cancer, encompassing Ncla = 2
distinct classes and Nd = 16 inputs. As for the classifier’s
training, a software-based implementation is employed to tune
the required parameters. All related metrics are directly fed
into the hardware classifier. The necessary parameters for the
system are computed by evaluating the mean value and prior
probability of each class.

The Thoracic Surgery Data is a dataset available from the
UCI Machine Learning Repository [7]. It encompasses clinical
information about patients who underwent thoracic surgery for
lung-cancer treatment. This dataset is valuable for research in
medical and healthcare fields, as it includes attributes such
as age, performance status, tumor size, and other relevant
factors. The aim is to predict the survival status of patients
after surgery based on these features. This dataset serves as
a valuable resource for machine learning practitioners and
researchers aiming to develop predictive models in the context
of thoracic surgery outcomes.

To evaluate the proposed classifier’s performance in terms
of classification specificity and the circuit’s behaviour under
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Process-Voltage-Temperature (PVT) variations, two distinct
tests were carried out on the layout. To account for random
effects, the outcomes of 20 different training-testing iterations
are depicted in Fig. 4. It predicts all the patients who have
cancer but it has false-positive alarms for patients who have
not cancer. As a result, it can be used as a wake-up engine for
a digital back-end. Subsequently, the circuit’s sensitivity on
random variations is affirmed through a Monte Carlo analysis.
Specifically, Fig. 5 displays the Monte Carlo Histogram for N
= 100 data points.

365 μm

19
3 
μm

Fig. 3: Layout of the proposed classifier’s architecture based on the
design methodology (extra dummy transistors are used).
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Fig. 4: Classification results of the proposed architecture and the
equivalent software model on the lung-cancer classification dataset
over 20 iterations.

V. COMPARISON STUDY AND DISCUSSION

In related literature, it is clear that the majority of analog
classifiers are typically tailored to specific applications. It is a
great challenge to compare different ML models or hardware
implementations on the same application and deduce fair
results. However, this challenge enables for adapting analog
classifiers to serve a common application, thereby simplifying
the process of evaluating performance that encompasses both
ML models and alternative methodologies. Table I offers an
overview of the performance comparison along a variety of
related classifiers. Here, Gaussian Mixture Model (GMM)
[11], Radial Basis Function [12], Long Short-Term Memory
(LSTM) [13], K-means [14], Bayesian [17], ANN (Artificial
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Fig. 5: Post-layout Monte-Carlo simulation results of the proposed
architecture on the lung-cancer classification dataset with µM =
75.87% and a standard deviation of σM = 1.73%.

Neural Network) [15], Fuzzy [16], Support Vector Machine
(SVM) [18], Threshold [19], Multilayer Perceptron (MLP)
[20] and centroid-based [21] classifiers, all within the context
of lung-cancer disease classification, are summarized.

The presented research introduces a solution, offering a bal-
ance between accuracy, power efficiency, and energy consump-
tion per classification when compared to equivalent classifiers
in the field. It’s imperative to highlight that in this specific
application, the design deal with a high input dimensionality.
The proposed configuration holds a significant edge by obvi-
ating the necessity for Principal Component Analysis (PCA),
allowing for the incorporation of all 16 input dimensions
without any loss of crucial information. In contrast, many alter-
native topologies must reduce the dimensions to 11 to achieve
optimal accuracy, representing a noteworthy constraint in prior
similar studies [13]–[15], [20]. While the proposed classifier
demonstrates its proficiency in accurately classifying a broader
range of classes, we opt for a binary classification scenario to
ensure a fair comparison. This adjustment facilitates a more
meaningful assessment in relation to binary analog classifiers
[16], [18], [19].

In terms of classification accuracy, the proposed architecture
outperforms all its counterparts, except for MLP [20], LSTM
[13] and K-means [14]. While these models achieve higher
accuracy, they come at the cost of increased complexity and
power consumption along with a larger silicon area due to their
components number. On the other end of the spectrum, the
Threshold classifier achieves the lowest power consumption
in comparison with the other classifiers, albeit with a trade-
off in accuracy and processing speed, attributed to its simple
model design [19]. It’s important to note that in biomed-
ical applications of this kind, swift processing speed isn’t
of paramount importance, primarily due to their infrequent
occurrence. Therefore, in the analysed approach, processing
speed is decreased to enhance accuracy and optimize power
consumption. Additionally, it touts lower energy consumption
per classification compared to all classifiers, except for ANN
[15], which achieves a lower classification accuracy.
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TABLE I: Analog classifiers’ comparison on the Lung-Cancer Disease Classification

Classifier Worst
accuracy

Mean
accuracy

Best
accuracy

Power
consumption

Processing
speed

Energy per
classification

No. of
Dimensions

This work Modulo 71.40% 75.45% 79.50% 744nW 320k classifications
s

2.33 pJ
classification

16

[11] GMM 68.40% 71.27% 73.80% 2.97µW 100K classifications
s

29.70 pJ
classification

11

[12] RBF 66.70% 70.41% 72.70% 27.87µW 200k classifications
s

139.35 pJ
classification

11

[13] LSTM 94.10% 97.54% 100.00% 22.54mW 870M classifications
s

25.91 pJ
classification

16

[14] K-means 88.30% 91.41% 95.10% 111.12µW 5M classifications
s

22.22 pJ
classification

16

[15] ANN 68.90% 72.43% 76.50% 2.63µW 14M classifications
s

0.19 pJ
classification

16

[16] Fuzzy 73.80% 78.65% 81.60% 3.67µW 4.55K classifications
s

806.59 pJ
classification

11

[17] Bayes 63.70% 68.72% 71.30% 1.79µW 100K classifications
s

17.90 pJ
classification

11

[18] SVM 70.10% 72.37% 74.70% 67.63µW 140K classifications
s

483.07 pJ
classification

11

[19] Threshold 67.60% 70.77% 75.90% 920nW 100K classifications
s

9.20 pJ
classification

11

[20] MLP 86.10% 87.56% 89.40% 354.18µW 930k classifications
s

380.84 pJ
classification

16

[21] Centroid 71.40% 73.87% 76.30% 2.98µW 100K classifications
s

29.80 pJ
classification

11

VI. CONCLUSION

In this work, an alternative approach for a power-efficient
(744nW), low voltage (0.6V), analog classifier for lung-cancer
surgery classification was proposed. The presented architecture
consists of Gilbert two-signal four-quadrant multipliers and
current comparators. The circuit’s parameters were adjusted
through offline training of a Bayes software classifier. The
post-layout simulation was conducted through a TSMC 90nm
CMOS process and the results were assessed in comparison
with both a software-based implementation and a variety of
related analog classifiers. The realized architecture demon-
strates a decent classification accuracy of 75.45% with notable
sensitivity properties.
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