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Abstract—The thyroid gland is a small organ that’s located in
the front of the neck, wrapped around the windpipe. Τhyroid
releases and controls hormones that help the metabolism work
correctly. Metabolism plays a main role in many different systems
throughout the human body. Thyroid disorder involves the
abnormal production of thyroid hormones. In this regard, if a
thyroid disease could be detected, patients could take a specific
treatment and greatly reduce the symptoms. This work proposes
a novel low power, low voltage (0.6V) analog architecture of a
Bayesian classifier for thyroid disease detection. The architecture
is based on a new Gaussian function circuit and the Lazzaro
Winner-Take-All circuit. The proper operation of the analog
classifier is verified using a real-world dataset. The proposed
architecture is realized in TSMC 90nm CMOS process and was
simulated using the Cadence IC Suite.

Index Terms—Bayesian Classifier, thyroid disease detection,
low-power design, analog VLSI implementation

I. INTRODUCTION

The Internet of Things (IoT) is expanding rapidly, creating
an environment of devices and sensors that in many cases
will function entirely on batteries [1], [2]. Many consumer and
industrial applications have systems which utilize IoT devices.
Some of these devices are employed without online recharging
capabilities. As a result hardware designers are relying on
power management solutions to efficiently handle the power
needed.

There is a new trend in which IoT applications are com-
bined with Machine Learning (ML) algorithms in order to
extract useful information from real-time measurements [3].
With the aim of real-time computation, a new domain is
growing based on new computation methods (edge computing
and analog computing). Edge computing [4] is a method in
which data are processed at the periphery of the network, as
close to the originating source as possible. Moreover, analog
computing [5] is closer to the physical laws by which all
computation is realized (which are continuous), analog circuits
often use fewer devices (area efficiency) than corresponding
digital circuits. Also, analog computing is characterised by
implemented circuits operating in the sub-threshold region [6]
which reduces the power consumption of a system.

Recently, an increasing number of research topics on wire-
less remote medical device for monitoring various physiolog-
ical parameters about human diseases require portable mobile
ability (wearable architectures) [7]. Motivated by the low-
power and low-area requirements of analog computing for
ML and IoT applications which also deals with the problems
of digital bottleneck, we introduce a low-power, low-voltage
area efficient and high-speed analog Bayesian classifier for
thyroid disease detection. The proposed classifier is designed
and verified on a real-world thyroid disease dataset [8].

The remainder of this paper is organized as follows. Section
II refers to the background of this work. More specifically, the
characteristics of a thyroid disease and a brief presentation of
the mathematical bayesian model are provided. The proposed
architecture and the basic building blocks of the proposed
classifier are described in Section III. The proper behavior
of the proposed Bayesian classifier is confirmed via a real-
world thyroid disease dataset in Section IV. Some concluding
remarks are given in Section V.

II. BACKGROUND

A. Thyroid Disease

Thyroid is a butterfly-shaped gland in the front of the neck
[8], [9]. More specifically, it is a very small organ which is
located below the Adam’s apple wrapped around the trachea
(windpipe). The thyroid is part of the endocrine system, which
is made up of glands that produce, store, and release hormones
into the bloodstream so the hormones can reach the body’s
cells. Its main role is the regulation of a person’s metabolism
(has important roles to regulate numerous metabolic processes)
by producing hormones. They also aid in muscle control, brain
development, mood regulation and digestive function.

Thyroid disorders are conditions that affect this organ. A
person can develop numerous problems if this organ abnor-
maly produces hormones [10]. The two most common types
of thyroid disease are hyperthyroidism and hypothyroidism.
Other abnormal conditions include thyroiditis, thyroid nod-
ules, goiter, and thyroid cancer. After the detection, treatment
options depend on the specific form of thyroid disease, and in-
clude medications, radioactive iodine, and sometimes surgery.
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Hypothyroidism results from the thyroid gland producing an
insufficient amount of thyroid hormones. Its main symptoms
include tiredness and fatigue, trouble sleeping, depression,
sensitivity to cold temperatures, dry skin and hair, difficulty
in concentrating, frequent and heavy periods, and joint and
muscle pain. On the other hand, hyperthyroidism describes
excessive production of thyroid hormone, a less common con-
dition than hypothyroidism. The main symptoms are anxiety,
irritability or moodness, hyperactivity, sweating or sensitivity
to high temperatures, hand trembling, hair loss, and missed or
light menstrual periods.

B. Bayesian Model

A naive Bayes classifier is a simple probabilistic classifier
based on applying Bayes’ theorem considering independence
between the input features [11]. Despite this assumption, when
combined with kernel density estimation, it can achieve high
accuracy.

Using Bayes’ theorem, the conditional probability of a
vector input X originating from a class Ck can be expressed
as:

p(Ck|X) =
p(Ck)p(X|Ck)

p(X)
, (1)

where, p(Ck) is the prior probability of class k, p(X) is the
evidence probability of the input X and p(X|Ck) is the value
of the probability density function (PDF) of class k for the
input X . For a Gaussian PDF with a diagonal covariance
matrix (as assumed by the Bayesian model), p(X|Ck) is given
by:

p(X|Ck) =
N∏

n=1

1√
(2π) · σ2

kn

e
− 1

2 ·
(xn−µkn)2

σ2
kn . (2)

Here, N is the number of features, µkn and σkn are the mean
value and the variance corresponding to the n-th feature of
class k, repsectively and xn is the n-th feature of the input
vector X .

The overall classifier determines the winning class by ap-
plying the argmax operator in the probabilities p(Ck|X) for
all the classes. In practice, the evidence probability is ignored
and, therefore, the output of the classifier is described by:

y = argmax
k∈[1,K]

{p(Ck|X)} = argmax
k∈[1,K]

{p(Ck)p(X|Ck)}. (3)

III. PROPOSED ARCHITECTURE

The architecture of an analog Bayesian classifier is ex-
plained in this Section. For generality, the classifier is based on
the mathematical analysis of the previous Section. The main
building block of a Gaussian Bayesian Model is the Gaussian
function. For that case, there are specific analog circuits, called
Bump circuits, which implement the Gaussian function [12].
In this work, a novel current-mode Bump circuit, which uses
a Lazzaro Winner-take-All (WTA) [13] neuron as a basic
building block, is introduced.

The proposed Bump circuit, shown in Fig. 1, consists of
two sub-circuits, a symmetric current correlator [14] and two
Lazzaro WTA neuron cells. The neuron cells replace the
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Fig. 1: Proposed Bump circuit.

Fig. 2: Parametric analysis (left) over Ibias, for Ir = 5nA, Vc = 0V
and M = 1 (right) over Ir , for Ibias = 12nA Vc = 0.2V and
M = 1.

Fig. 3: Parametric analysis (left) over Vc, for Ibias = 12nA, Ir =
5nA and M = 1 (right) over M , for Ibias = 12nA, Ir = 5nA and
Vc = 0.3V .

differential block of a typical Bump circuit topology [15],
[16]. This design achieves electronical tunability in all the
characteristics of a Gaussian function (mean value, variance,
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height). Specifically, the current parameter Ir, the voltage
parameter Vc and the bias current Ibias control the mean value,
the variance and the height, respectively. The variance is also
tuned by the neuron (Mn3, Mn6) transistors’ dimension ratio
M · (WL )3,6. The appropriate curves are provided in Figs. 2
and 3. All transistors operate in the sub-threshold region and
their dimensions are summarized in Table I. The power supply
rails are set as VDD = −VSS = 0.3V .

TABLE I: MOS Transistors’ Dimensions (Fig. 1).

Block W/L
(µm/µm)

Current
Correlator

W/L
(µm/µm)

Mn1-Mn9 0.4/1.6 Mp1-Mp6 0.4/1.6
Mn10 0.8/1.6 - -

The mathematical Gaussian Bayes model is based on a
Gaussian PDF. Specifically, in real-world applications this
PDF is a multivariate Gaussian function. Based on (2) the
multivariate Gaussian PDF is calculated by multiplying uni-
variate Gaussian PDFs. By connecting two or more bump
circuits in a cascaded form this multiplication is achieved [14].
In particular, the output current of the (n-1)-th Bump circuit
is connected to the bias current of the n-th Bump. Only the
first bump circuit is biased with a specific bias current (Ibias)
representing the prior probability (p(Ck)) of the corresponding
class k.

The second basic building block of the analog Bayes classi-
fier is the WTA circuit, shown in Fig. 4 [13]. A WTA circuit is
capable of performing the argmax operator. Specifically, given
a set of N input signals and assuming that there is a single
maximum among them, located at index j ≤ N, the output
Ioutj has a non-zero value (winner), whereas the rest are
zero. This behavior is achieved when all the transistors operate
in the sub-threshold region. The transistors’ dimensions are
equal to W/L = 0.4µm/1.6µm. Based on (3) and utilizing
the aforementioned building blocks, the proposed classifier is
shown in Fig. 5.
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Fig. 4: Lazzaro WTA circuit with 3 neurons.
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Fig. 5: Analog Bayesian classifier with 3 classes and 5-D inputs.
(left) Multivariate Gaussian function circuits (right) WTA circuit.

IV. APPLICATION EXAMPLE AND SIMULATION RESULTS

In this Section, the proper operation of the proposed
Bayesian classifier is confirmed via a real-world thyroid dis-
ease detection problem. The proposed architecture has been
designed in a TSMC 90nm CMOS process using the Cadence
IC suite. The power supply rails for the whole classifier are
set as VDD = −VSS = 0.3V . All the simulation results are
conducted on the layout (post-layout simulations) presented
in Fig. 6. The dataset is acquired from the University of
California, Irvine (UCI) Machine Learning Repository [8]
and contains (five) blood test metrics (related to thyroid) for
patients with normal thyroid, hypothyroidism and hyperthy-
roidism. These metrics are feed directly to the classifier. The
system’s necessary parameters are provided by calculating the
mean value, the variance and the prior probability of each
class.

To highlight the gains of the proposed Bayesian classifier,
two different tests are conducted. The first test compares the
proposed architecture with a software-based one in terms of
classification accuracy. Specifically, in Fig. 7 the classification
accuracies over 20 different training test-cases are provided
for both implementations. The results are also summarized in
Table II. The second, tests the circuit’s sensitivity via Monte
Carlo analysis for N = 100 points. The Monte Calro his-
togram, shown in Fig. 8, has a mean value of µM = 0.916 and
a standard deviation of σM = 0.023. Both testcases confirm
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Fig. 6: Proposed Classifier’s Layout.

the performance, the high accuracy and the desired sensitivity
of the proposed classifier. The performance characteristics are
summarized in Tables II and III.

Bayesian Classifier Comparison

Software

Proposed

Fig. 7: Post-layout simulation results over 20 iterations.

TABLE II: Accuracy Results (over 20 iterations).

Method Best Worst Mean Std.

Software 1.000 0.9231 0.9639 0.0184
Proposed 0.9692 0.9231 0.9423 0.0149

Fig. 8: Post-layout Monte Carlo simulation results.

TABLE III: Performance Summary

Technology Power
Supply

Power
Consumption

Classification speed

90nm 0.6V 365nW 170K classifications
second

V. CONCLUSION

In this work, a novel architecture of an analog Bayesian
classifier for thyroid disease prediction was proposed. The pre-
sented architecture consists of an alternative implementation
for a Bump circuit and the Lazzaro WTA circuit. The proposed
classifier can be used as a basic building block for the design
of more complicated and accurate diagnosis systems. Based on
the post-layout simulation results, the implemented architec-
ture achieves 94.23% classification accuracy and reasonable
sensitivity characteristics.

REFERENCES

[1] J. Henkel, S. Pagani, H. Amrouch, L. Bauer, and F. Samie, “Ultra-
low power and dependability for iot devices,” Invited Paper for IoT
Technologies), pp. 978–3, 2017.

[2] K. Goebel, B. Saha, A. Saxena, J. R. Celaya, and J. P. Christophersen,
“Prognostics in battery health management,” IEEE instrumentation &
measurement magazine, vol. 11, no. 4, pp. 33–40, 2008.

[3] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “Diannao family:
energy-efficient hardware accelerators for machine learning,” Communi-
cations of the ACM, vol. 59, no. 11, pp. 105–112, 2016.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[5] W. Haensch, T. Gokmen, and R. Puri, “The next generation of deep
learning hardware: Analog computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 108–122, 2018.

[6] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold design
for ultra low-power systems. Springer, 2006, vol. 95.

[7] L. Zhang, H. Ji, H. Huang, N. Yi, X. Shi, S. Xie, Y. Li, Z. Ye, P. Feng,
T. Lin et al., “Wearable circuits sintered at room temperature directly
on the skin surface for health monitoring,” ACS Applied Materials &
Interfaces, vol. 12, no. 40, pp. 45 504–45 515, 2020.

[8] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz,
“Uci repository of machine learning databases, 1998,” 1998.
[Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-
databases/thyroid-disease/

[9] M. P. Vanderpump, “The epidemiology of thyroid disease.” British
medical bulletin, vol. 99, no. 1, 2011.

[10] A. Jabbar, A. Pingitore, S. H. Pearce, A. Zaman, G. Iervasi, and S. Razvi,
“Thyroid hormones and cardiovascular disease,” Nature Reviews Cardi-
ology, vol. 14, no. 1, pp. 39–55, 2017.

[11] C. M. Bishop, “Pattern recognition,” Machine learning, vol. 128, no. 9,
2006.

[12] V. Alimisis, M. Gourdouparis, G. Gennis, C. Dimas, and P. P. Sotiriadis,
“Analog gaussian function circuit: Architectures, operating principles
and applications,” Electronics, vol. 10, no. 20, p. 2530, 2021.

[13] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-
take-all networks of o (n) complexity,” 1988.

[14] V. Alimisis, M. Gourdouparis, C. Dimas, and P. P. Sotiriadis, “A 0.6
v, 3.3 nw, adjustable gaussian circuit for tunable kernel functions,” in
2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits
and Systems Design (SBCCI). IEEE, 2021, pp. 1–6.

[15] ——, “Ultra-low power, low-voltage, fully-tunable, bulk-controlled
bump circuit,” in 2021 10th International Conference on Modern Cir-
cuits and Systems Technologies (MOCAST). IEEE, 2021, pp. 1–4.

[16] M. Gourdouparis, V. Alimisis, C. Dimas, and P. P. Sotiriadis, “An
ultra-low power,±0.3 v supply, fully-tunable gaussian function circuit
architecture for radial-basis functions analog hardware implementation,”
AEU-International Journal of Electronics and Communications, vol.
136, p. 153755, 2021.

2021 International Conference on Microelectronics (ICM)

156
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 04,2024 at 10:43:48 UTC from IEEE Xplore.  Restrictions apply. 


