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Abstract—Edge detection stands as a pivotal tool across a
spectrum of Biomedical imaging applications. One prominent
use case involves discerning spatial boundaries within an image,
facilitating subsequent tumor or broken bone separation and
identification. While edge detection typically demands significant
computational resources, the inherently parallelizable nature
of this implementation offers distinct advantages over other
power-hungry approaches. In this study, an analog-hardware
approximation of the Robert’s Cross operator is introduced,
based on Gaussian function circuits to achieve notable gains in
area/power efficiency and high accuracy. The implemented design
is tested using three biomedical images, yielding a high Structural
Similarity Index Metric of ∼ 0.8 while requiring an area of
1912µm2 per pixel. The proposed architecture was implemented
and simulated in a TSMC 90nm CMOS process, utilizing the
Cadence IC Suite.

Index Terms—Analog integrated circuits, Biomedical imaging,
Bump circuit, Edge detector, Low-power design

I. INTRODUCTION

Biomedical imaging is a transformative field that lies at
the intersection of medicine, engineering and technology,
fundamentally reshaping our comprehension and diagnosis
of intricate physiological processes within the human body
[1]. Employing a diverse range of cutting-edge techniques
including X-ray, computed tomography (CT) scans, Magnetic
Resonance Imaging (MRI) and ultrasound, biomedical imag-
ing empowers us to peer into the detailed structures and
functions of living organisms with unprecedented clarity [2].
This invaluable tool not only facilitates early disease detection
and precise localization but also guides surgical interventions
and monitors treatment responses [2]. Through harnessing
the potential of advanced imaging modalities, researchers
and healthcare professionals are forging a path towards more
effective therapies and improved patient outcomes [3]. The
integration of biology and technology in biomedical imaging
holds the promise of a future where diagnoses are more pre-
cise, treatments are highly personalized and lives are positively
influenced on a global scale.

The combination of Computer Vision (CV) and biomedical
imaging can extract meaningful information from images
and videos [4]. This enables greater precision in medicine.
By leveraging the computational ability of computer vision
algorithms, we empower machines to discern, analyze and
interpret intricate visual data derived from the human body [4].

From early disease diagnosis to surgical planning and treat-
ment evaluation, this combined approach helps patient care
[5]. The only difficulty is that achieving real-time automatic
extraction, analysis and processing of the vast amounts of
data, even for relatively straightforward computer vision tasks,
necessitates an unprecedented level of performance [6]. At
present, technologies such as Application Specific Integrated
Circuits (ASICs), Field Programmable Gate Arrays (FPGAs)
and Graphic Processing Units (GPUs) have significantly ad-
vanced in meeting this surge in computational requirements
[7]. An alternative solution to the previous power harvesting
architectures is analog computing, which offers advantages in
terms of power efficiency and speed [8]. This makes it well-
suited for meeting the real-time processing requirements in
medical imaging. In pursuit of this goal, this work introduces
a precise, power-efficient and compact analog integrated image
edge detector.

In the existing literature, with the exception of [9], [10]
(our previous works), there are only a limited number of
works related to analog integrated-based image edge detection.
Notably, the approach detailed in [11] stands out for its good
power management and compact area allocation per pixel.
Alternatively, other designs emphasizing system efficiency opt
for the implementation of either current-based [12] or voltage-
mode [13]–[15] convolution filters. Conversely, [16] and [17]
concentrate on the integration of a more precise algorithm,
specifically the Sobel operator for edge detection [18], albeit
at the expense of increased area and power consumption.
Finally, an unconventional approach is outlined in [19], where
an edge detector utilizing erosion and dilation operators is
introduced. This diverse array of methodologies demonstrates
the multidimensionality of analog-based image edge detection
techniques.

The rest of this work is ordered in the following manner.
The related background of this work is analysed in Section II.
The implemented architecture is proposed in Section III. The
simulation results are provided and the metrics are compared
to related works in Section IV. Finally, Section V concludes
this work.

II. BACKGROUND

The Regional Convolutional Operator (RCO) identifies areas
in the diagonal direction that exhibit high spatial frequency,
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mirroring the perceptual tendencies observed in human vision
[20]. For an image with a resolution of N×M , the light inten-
sity of a pixel at coordinates (i, j) in grayscale is represented
by xi,j . It’s worth noting that for every i < N and j < M ,
the RCO provides an approximation of the image’s gradient,
denoted as zi,j , as illustrated below:

zi,j =
√
(
√
xi,j −

√
xi+1,j+1)2 + (

√
xi+1,j −

√
xi,j+1)2.

(1)
The computations involved in these processes necessitate
intricate analog hardware circuitry. Therefore, [9] introduces
a hardware-optimized adaptation of the RCO, tailored to
harness the advantages of Bump circuits, a specialized type of
Gaussian function generation circuit [21]. This modification
proves instrumental in the deployment of an analog integrated
image edge detector. In this revised algorithm, equation (1)
encapsulates the transformed form of the RCO’s formula,
streamlining its application in practical hardware configura-
tions:

ẑi,j = 2π · σ2 · N (yi,j‖yi+1,j+1, σ
2) · N (yi+1,j‖yi,j+1, σ

2),
(2)

where N (x‖µ, σ2) describes the univariate Gaussian function
which is expressed by:

N (x‖µ, σ2) =
1√

(2π) · σ2
e−

1
2 ·

(x−µ)2

σ2 . (3)

In this context, µ represents the mean value while σ signifies
the variance of the Gaussian function. Also, a straightforward
threshold circuit distinguishing between edges and non-edges
can be employed to generate a binary output. In this work,
however, it is not necessary since edges and non-edges are
separated easily. In comparison with the previous works [9],
[10], the implemented one is more precise and it can imple-
ment a fully tunable and accurate Gaussian curve which is
necessary for biomedical imaging.

III. PROPOSED DESIGN

In this study we adopt the framework proposed in [9],
enhancing it with a precise, power-efficient voltage-mode
Bump circuit [22]. Furthermore, the design is simplified by
removing the previously employed threshold circuit (edges
and non-edges are recognized). It’s worth emphasizing that
all transistors function within the sub-threshold domain with
power supply rails set to VDD = −VSS = 0.3V .

A. Edge Detector Circuitry

In this work, a differential difference voltage-mode Bump
circuit is utilized [22] depicted in Fig. 1. This configuration
consists of a differential difference pair (two differential pairs)
and a symmetric current correlator, biased by a current mirror
Ibias. The differential pairs operation yield two drain currents
denoted as I1 and I2, related to the two neuron currents in
previous studies [9], [21]. These sigmoidal currents drive the
correlator’s output, resulting in a response akin to a Gaussian
curve. The bias current, denoted as Ibias, tunes the amplitude
of this curve. Notably, in this setup, adjustments to the variance
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Fig. 1: A Gaussian Function circuit has been successfully integrated,
wherein the voltage Vin serves as the system’s input. The parameters
Vr and Vc along with the bias current Ibias are utilized to fine-tune
the mean value, variance and amplitude of the Bell-shaped function.
This configuration enables precise control over the characteristics of
the function, enhancing its adaptability to diverse input scenarios.
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Fig. 2: The analog hardware implementation of a Robert Cross
Operator. It consists of two cascaded Bump circuit.

of the Gaussian curve can be made by tuning the voltage
parameter Vc. However, for the RCO, fine-tuning the variance
of the Gaussian function provides a higher quality output for
biomedical images.

Fig. 3: The implementation of the RCO cell’s Layout.
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In equation (2) the RCO’s outcome is determined by the
multiplication of two Gaussian functions. The choice of Bump
circuits proves pivotal as they demonstrate remarkable effi-
ciency in carrying out this multiplication task without the need
for supplementary components (e.g. analog multipliers). By
biasing the second Bump circuit with the output current of the
first, the resulting output current precisely represents the prod-
uct of their individual Gaussian curves [23]. It is important to
note that, in this setup, only the first Bump circuit is subjected
to a designated external bias current (Ibias). In contrast to [9],
this study takes a different approach to minimize the circuit’s
footprint. Specifically, the second Bump circuit undergoes a
redesign, opting for a PMOS-based configuration, a depiction
of which is presented in Fig. 2. Furthermore, manipulating the
bulk voltage of bulk-controlled transistors like Mn1 and Mn4

enables to effectively regulate the circuit’s output, allowing for
the detection of more or fewer edges depending on the specific
application at hand. Finally, the dimensions of all transistors
are detailed in Table I.

TABLE I: MOS Transistors’ Dimensions (Fig. 1).

Block W/L
(µm/µm)

Current
Correlator

W/L
(µm/µm)

Mn1,Mn4 1.6/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.8/0.4 Mp3-Mp6 0.4/1.6
Mn5-Mn8 0.4/1.6 - -
Mn9,Mn10 1.6/1.6 - -

...
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Fig. 4: The proposed system-level architecture entails the deployment
of a multi-cell analog edge detector that systematically scans the
entirety of the image. This approach allows for comprehensive and
detailed edge detection across the entire visual field.

B. High-Level Implementation

In the related study [9], various system-level architectures
were introduced, each offering distinct trade-offs between
computation speed, chip area and power consumption. While
some architectures achieved high frame-per-second (FPS) val-
ues, a crucial goal for an edge detector in hardware, they
proved impractical in terms of ASIC area. In this endeavour
we have managed to substantially reduce the size of the
RCO’s cell, as evidenced by the layout depicted in Fig. 3,
eliminating the need for the threshold circuit. To mitigate for
manufacturing precision and fabrication mismatch effects, the
common-centroid technique is implemented in the layout de-
sign, necessitating the use of additional dummy transistors. In
a high-level design the dummies can be minimized or altered

with active ones. Moreover, they can potentially accommodate
the integration of photodiodes and/or multiple cells in close
proximity, leading to an even more substantial reduction in
the overall chip area. Consequently, architectures resembling
the one exemplified in Fig. 4 can incorporate numerous RCO
cells before approaching an impractical size.

IV. SIMULATION RESULTS AND COMPARISON STUDY

In this section we conduct a comparative analysis involving
analog integrated implementations, for example the current
work and our previous related study [9]. Both analog architec-
tures and their corresponding simulation results are executed
within a TSMC 90nm CMOS process, utilizing the Cadence
IC suite. To ensure a comprehensive evaluation across diverse
biomedical images, our comparison is based on three distinct
image scenarios: XRAY hand, foot and scalp [24]. The binary
images for all cases are depicted in Fig. 5. Similar to our
prior research we employ three key metrics to underscore
the advantages of this implementation: the layout area per
pixel (LAP), the Structural Similarity Index Metric (SSIM)
and the power consumption per pixel (PCP). For a detailed
summary of these results refer to Table II. The LAP and
PCP metrics, which remain independent of the chosen image,
are presented in Table III. However, it’s worth noting that
the visual assessment of the images generated by the analog
circuits is also crucial.

TABLE II: Analog Edge Detectors: Performance Overview

Work Image Resolution Total Power SSIM
Consumption

[9] Hand 697× 416 9.7µW 0.73
This work Hand 697× 416 9.1µW 0.77

[9] Foot 458× 515 5.6µW 0.81
This work Foot 458× 515 5.1µW 0.83

[9] Scalp 520× 515 5.9µW 0.76
This work Scalp 520× 515 5.4µW 0.82

Concluding the assessment, a Monte-Carlo analysis is per-
formed involving N = 200 points to evaluate the circuit’s
resilience to Process, Voltage and Temperature (PVT) fluctu-
ations. The focus of this examination lies on the threshold
boundary of the circuit translated as the voltage disparity
between two diagonal pixels. Results indicate a mean dis-
tance of µ = 2mV accompanied by a standard deviation
of σ = 0.7mV under PVT variations. Notably, this study
demonstrates considerably higher sensitivity to PVT variations
compared to our earlier work [9].

Given the primary objective of this study to optimize
LAP and PCP metrics while providing high-quality results, a
comprehensive comparison is presented in Table III, in contrast
to our approach with other analog edge detection methods
from existing literature. It’s worth noting that assessing the
image quality produced by these methods may not be entirely
equitable. Notably, the proposed methodology demonstrates
high performance in terms of PCP and achieves the highest
attainable FPS in scenarios where a fully parallel architecture
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Fig. 5: Images provided by: Left: the prototype image. Center: the software-based edge detector. Right: the analog hardware edge detector
proposed in this work.

TABLE III: Analog Edge Detectors: Performance Overview

Technology Supply PCP FPS LAP
Voltage

This work 90nm 0.6V 23nW 130K 1912µm2

[9] 90nm 0.6V 33nW 100K 2392µm2

[10] 90nm 0.6V 14nW 100K 956µm2

[11] 180nm 1.8V 0.9µW 1300 225µm2

[12] 600nm 1.8V 3.6µW 50 100µm2

[13] 350nm 3.3V 5.8µW N/A 1125µm2

[14] 250nm N/A 1.2µW N/A 633µm2

[16] 150nm 1.8V 790µW 75 140µm2

[17] 350nm 3.3V 26.8µW 2000 1125µm2

[19] 500nm 1.8V 368µW N/A 8600µm2

is employed. Nevertheless, it’s important to acknowledge that
despite the reduction in chip area achieved in this work,
there are still other approaches in the literature that manage
to achieve an even more compact footprint. The primary

accomplishment lies in the attainment of high-quality results
while maintaining comparable levels of PCP and LAP.

V. CONCLUSION

This work introduces an analog edge detector capable of
achieving a small per-pixel area that enables highly parallel ar-
chitectures, making it adept at processing even high-definition
images. In a fully parallel setup the proposed edge detector
demonstrates the capacity to process images at impressive rates
of up to 130 thousand frames per second while consuming
a mere 23nW per pixel. This substantial advancement can
be primarily attributed to the utilization of a voltage-mode
and differential difference Bump circuit. To comprehensively
evaluate the proposed architecture, three medium-resolution
images representing biomedical imaging applications were
employed. Through simulation in a TSMC 90nm CMOS
process the resulting edge images affirm the high quality of
the output. In conclusion, the presented architecture stands as
a prime contender for serving as a pre-processing block in
various biomedical imaging systems necessitating robust edge
detection capabilities.
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