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Abstract—Hepatitis is a medical condition characterized by
inflammation of the liver. It can be triggered by various factors,
including viral infections, excessive alcohol consumption, specific
medications, or autoimmune disorders. Recognizing hepatitis
early is crucial in reducing its symptoms, as it allows for
timely treatment. In this study, a low-power (4.31µW ) and
low-voltage (0.6V) analog artificial neural network classifier
is introduced, utilizing a Gaussian-based activation function.
The architecture comprises a hidden layer: with a Gaussian
activation function circuit and tanh approximation, an output
layer with a softmax function circuit, and an argmax operator. A
comparative analysis is performed to evaluate the performance
of this methodology against commonly used analog classifiers.
To conduct this assessment, a real-world hepatitis dataset is
employed. The models are trained and results processed using
the Python programming language. The hardware design and
result processing are executed using Cadence IC Suite, utilizing
the TSMC 90nm CMOS process technology, demonstrating the
practical applicability and effectiveness of this methodology.

Index Terms—Artificial Neural Network, analog VLSI imple-
mentation, hepatitis classification, low-power design

I. INTRODUCTION

Machine Learning (ML) and Artificial Intelligence (AI)
have revolutionized bioengineering and healthcare, ushering
in a new era of personalized, data-driven medical practices
[1]. These technologies enable in-depth analysis of vast sets
of biological and clinical data, offering unprecedented insights
into disease mechanisms, treatment responses, and patient
outlooks [1]. In bioengineering, ML algorithms are utilized
to craft and enhance tailored medical devices, prosthetics,
and implants [2]. Additionally, AI-powered image analysis
has greatly enhanced diagnostic precision in medical imaging,
swiftly detecting abnormalities and tumors.

Regarding healthcare, prognostic models utilize patient data
to predict the trajectory of diseases, enabling proactive inter-
ventions [2]. Additionally, natural language processing facil-
itates the extraction of invaluable information from clinical
records and academic literature, expediting medical research
and knowledge acquisition [3]. The integration of ML and AI
in bioengineering and healthcare not only elevates the standard
of patient care but also lays the foundation for pioneering

innovations with the potential to revolutionize the future of
medicine [4].

The hardware implementation of ML and AI in bioengi-
neering is a pivotal frontier in modern healthcare tech [1].
Specialized systems process vast datasets, enabling real-time
decision-making in medical applications. Customized circuits
and accelerators handle complex ML algorithms, optimiz-
ing tasks like image recognition and predictive modeling.
Neuromorphic computing mimics the human brain’s neural
networks, offering parallel processing for tasks like pattern
recognition [5]. These hardware advances boost the speed and
efficiency of ML and AI in bioengineering, with potential to
revolutionize patient care and medical research.

Analog computing is rapidly advancing in the field of
bioengineering for ML and AI applications [6]. This approach
utilizes continuous signals and physical phenomena to process
complex biological data, mirroring the continuous nature of
biological systems. This is particularly beneficial for real-
time responses in bioengineering, where intricate physiological
processes are common. Specialized analog circuits mimic
neuron behavior, efficiently processing neural network models.
Analog computing excels in tasks like signal processing and
pattern recognition, proving invaluable in medical imaging and
biosignal analysis [7]. Its precision and speed are poised to
drive significant progress in personalized medicine, prosthetic
design, and bioinformatics, leading to more effective health-
care solutions and improved patient outcomes.

Motivated by the low-power and area efficiency require-
ments of smart sensors for biomedical applications [8], [9], this
work proposes a low-power (4.31µW ) and low-voltage (0.6V)
analog artificial neural network (ANN) classifier, utilizing a
Gaussian-based activation function. The implemented classi-
fier is a promising approach, appropriate for battery dependent
smart sensor classification systems, since it achieves 96.42%
accuracy. It is designed and verified on a real-world hepatitis
disease recognition dataset [10]. The post-layout simulation
results, performed in a TSMC 90nm CMOS process and
simulated using Cadence IC Suite, confirm the accuracy of the
proposed implementation through comparison with a software-
based approach and analog related classifiers.
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The remainder of this paper is organized as follows. Section
II refers to the background; explains the ANN approach and
the hepatitis disease. In Section III the proposed architecture
and the basic building blocks of the proposed classifier are
thoroughly explained. In Section IV, the proposed classifier’s
performance is validated using a real-world dataset for hepati-
tis disease recognition and is contrasted with the software-
based implementation. Section V conducts a comparative
study with analog classifiers in the field. Concluding remarks
are presented in Section VI.

II. BACKGROUND

A. Artificial Neural Network Model

An ANN, inspired by the human brain’s neural network
system, is a potent computational model [11]. It comprises
layers of interconnected neurons. Each neuron processes and
transmits information, with the input layer receiving data.
This data is weighted and processed through hidden layers
for complex computations. The output layer produces the
final prediction or classification. Through backpropagation
during training, the network adjusts its internal parameters,
minimizing the error between predicted and actual outcomes.
This capability allows ANNs to discern intricate patterns in
data, making them invaluable in tasks such as image recogni-
tion, speech processing, and predictive modeling. ANNs have
transformed various fields, showcasing their adaptability and
potential in solving complex problems.

ANNs can be mathematically represented at different levels
of abstraction. Here are some of the fundamental equations
[11] that describe the workings of a simple feedforward neural
network; neuron input (weighted sum), activation function and
feedforward process. The input to a neuron in a feedforward
network is calculated as the weighted sum of its inputs,
followed by the addition of a bias term and the application
of an activation function. This can be represented as:

zj =

n∑
i=1

wijxi + bj . (1)

Where:

• zj is the weighted sum for neuron j.
• wij represents the weight connecting neuron i to neuron
j.

• xi is the output of neuron i in the previous layer.
• bj is the bias term for neuron j.

The output of a neuron is obtained by applying an activation
function to the weighted sum. Common activation functions
include sigmoid, Rectified Linear Unit (ReLU) , tanh, and
softmax. For instance, the sigmoid activation function is
defined as:

aj = σ(zj) =
1

1 + e−zj
. (2)

Here, aj is the output (activation) of neuron and σ represents
the sigmoid function. In a feedforward network, the outputs of

one layer serve as the inputs to the next. This process continues
until the final layer provides the network’s output.

x
(l+1)
j = σ(

n∑
i=1

w
(l)
ij x

(l)
i + b

(l)
j ). (3)

Here, x(l)j is the output of neuron j in layer l, w(l)
ij are the

weights connecting neurons between layers l and l + 1 and
b
(l)
j is the bias term for neuron j in layer l. These equations

form the basis for understanding the computations that occur
within a feedforward ANN.

B. Hepatitis Disease

Hepatitis is a widespread medical condition characterized
by inflammation of the liver [12]. It can be caused by various
factors, with viral infections being the most common culprits.
Hepatitis viruses are categorized from A to E, each with
distinct transmission methods and potential outcomes. For
instance, Hepatitis A and E are typically contracted through
contaminated food or water, while Hepatitis B, C, and D are
primarily transmitted through contact with infected blood or
other bodily fluids. Chronic forms of Hepatitis, particularly
B and C, can lead to serious liver complications over time,
such as cirrhosis and even liver cancer if left untreated. It’s
imperative to prioritize prevention through vaccination, safe
hygiene practices, and public health education to mitigate the
spread of hepatitis.

III. PROPOSED ARCHITECTURE

...

Iin1

IinNcla

Iout1

IoutNcla

...

...

...

Class Ncla

Class 1
I(1)r

I(Ncla)r

I1

INcla

Iin
argmax

Iin

Fig. 1: The high level architecture of the proposed ANN classifier
which combines Ncla, Nd input features. It consists of Ncla class
cells and argmax operator with Ncla inputs.

In this section, the proposed analog implementation of the
ANN is analysed. The introduced architecture is adaptable,
capable of handling different quantities of classes and input
dimensions. The structure of the suggested classifier, depicted
in Fig. 1, is tailored for a classification task with Ncla

classes and Nd input dimensions. The number of layers in
each class is a hyper-parameter, typically determined through
exploratory data analysis. For simplicity, it consists of 1 hidden
layer in each class. The proposed architecture’s k-th (k ∈
{1, ..., Ncla}) class comprises a hidden layer: with a Gaussian
activation function circuit (GHL) and tanh approximation
(THL), an output layer with a softmax function circuit, and a
Voltage-to-Current (V/I) converter, as shown in Fig. 2.

Firstly, the inputs are sent to a hidden layer which performs
a nonlinear Gaussian function as activation function, on the
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Fig. 2: The proposed architecture’s k-th (k ∈ {1, ..., Ncla}) class comprises a hidden layer: with a Gaussian activation function circuit (GHL)
and tanh approximation (THL), an output layer with a softmax function circuit, and a Voltage-to-Current (V/I) converter.

weighted sum of all inputs. The input currents are adjusted to
restrict the input range for the hidden layer between −0.3V
and 0.1V, ensuring that the input transistors in the hidden
layer never enter the linear region. For the implementation of
the Gaussian function as activation function, a current-mode
Gaussian function circuit [13] is employed. It is shown in
Fig. 3 and the dimensions of the transistors are summarized
in Table I. In particular, the Iin is the input current and the
current parameter Ir, the voltage parameter Vc, and the bias
current Ibias regulate the mean value, variance, and amplitude,
respectively.

Mp4
Mp1

Mp3

Iout

✄ ✝ ✠

Mp2

✁ ✁ ✁ ✁

VDD ✁ ✁

Mp5 Mp6

Mnd1
Vc

Mn5

Mnd2
Vc

Mn7

Mn6 Mn8

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Ibias

VDD

VSS

VSS

Mn4Mn3

VSS

✜

✢ ☞ ✣ ✤

✁ ✁

Iin

VDD ✁ ✁

Ir

VDDI1 I2

Vs

Fig. 3: The current-mode Gaussian activation function circuit.

The second component in the hidden layer is a straightfor-
ward NMOS cascode current mirror with a PMOS diode load,
which is shown in Fig. 4. Since all transistors operate in the

TABLE I: MOS Transistors’ Dimensions (Fig. 3).

Block W/L
(µm/µm)

Current
Correlator

W/L
(µm/µm)

Mn1-Mn6 0.8/1.6 Mp1-Mp2 0.8/1.6
Mn7, Mn9 0.4/1.6 Mp3-Mp6 0.4/1.6
Mn8, Mn10 1.6/1.6 - -

sub-threshold region, this unit imparts an approximately tanh
behavior to the output current of the Gaussian function circuit.
This method significantly trims down hardware expenses when
compared to conventional circuit implementations of these
activation functions. In the proposed ANN classifier, weight
vectors are realized by adjusting the bias current Ibias of the
preceding Gaussian function circuit block. For each class, a
set of Nd basic NMOS cascode current mirrors (CCMs) with a
PMOS diode load is employed. These circuits are linked to the
output of the respective Gaussian function circuits, receiving
an input current Iok (k ∈ {1, ..., Ncla}). A second set of
Nd basic NMOS CCMs with a PMOS diode load is put into
operation and biased with a current Irsk (k ∈ {1, ..., Ncla}).
The current Irsk serves as a parameter current, supplied during
the classifier’s training.

Both sets of NMOS cascode current mirrors generate output
voltages, namely Vins and Vrs, as depicted in Fig. 4. These
voltages are subsequently fed into the output layer. The output
neuron is implemented as a pseudo-differential current mirror,
carrying out the softmax operation on the weighted sum of
the outputs from the hidden layer, which is shown in Fig. 4
(middle block). Following this, the output voltage (Vo) from
each softmax block is directed into a V/I converter [14], shown
in Fig. 5, which produce the appropriate output current. Then,
all the output currents are fed into the argamx operator circuit
(determining the winning class).

Moving forward, the ANN is established using an argmax
operator circuit, specifically employing a Winner-Take-All
(WTA) circuit [15]. In a classification problem featuring Ncla
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Fig. 4: A set of Nd basic NMOS CCMs with a PMOS diode load linked to the output of the respective Gaussian function circuits (left).
A second set of Nd basic NMOS CCMs with a PMOS diode load is put into operation and biased with a current Irsk (right). A pseudo-
differential current mirror, carrying out the softmax operation (middle)
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Fig. 5: The implementation of V/I converter.

classes, the standard Lazzaro WTA circuit encompasses Ncla

neurons. These neurons collectively share a common bias
current, as illustrated in Fig. 6. Each neuron within the WTA
circuit corresponds to an individual class. The WTA circuit
efficiently discerns the class with the highest input current and
allocates a non-zero output current to the respective neuron.
Concurrently, the remaining neurons receive an output current
of zero. Notably, all transistors in the mentioned designs
operate in the sub-threshold region, with power supply rails
set as VDD = −VSS = 0.3V.

IV. HEPATITIS DATASET AND SIMULATION RESULTS

In this Section, the proper operation of the proposed classi-
fier is confirmed via a real-world hepatitis disease recognition
dataset [10]. It is provided by University of California, Irvine
(UCI) Machine Learning Repository. It contains valuable
information related to the liver disease, hepatitis, which is
a significant global health concern. It encompasses various
laboratory test results, and presence of hepatitis B and C
viruses. By leveraging it, experts can gain deeper insights into

✄ ☎
✟Mn2

✄☎
✟Mn1

VSS
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✢ ☞ ✣ ✤Iin1
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VDD
Ion1

    NMOS 
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VDD

Iin2

NMOS
Neuron Cell Ncla

✁ ✁

VSS

✁ ✁

VDD

IinNcla

...

Ibias
✁ ✁

VSS

Fig. 6: A Ncla-neuron Standard Lazzaro NMOS Winner-Take-All
(WTA) circuit.

the factors influencing the onset and progression of hepatitis,
ultimately contributing to improved diagnostic and treatment
strategies for individuals affected by this condition.

The proposed architecture is implemented using the TSMC
90nm CMOS process with the aid of the Cadence IC suite.
The entire classifier is powered with VDD = −VSS = 0.3V .
All the simulation results are provided from the implemented
layout, which is depicted in Fig. 7 (post-layout simulations).
This study addresses a hepatitis disease recognition problem,
involving Ncla = 2 classes and Nd = 19 inputs. It’s a binary
classification task wherein the classifier determines whether a
patient is healthy or afflicted with hepatitis, making it a binary
classifier. The relevant metrics (attributes) mentioned earlier
are directly inputted into the classifier. The system’s essential
parameters are derived by calculating the mean value, variance,
and prior probability for each class.

To comprehensively evaluate the proposed classifier in terms
of classification specificity and its performance under varying
Process, Voltage, and Temperature (PVT) conditions, two
distinct tests are conducted on the layout. To account for
experimental variability, the results from 20 different training-
test iterations are shown in Fig. 8. The circuit’s sensitivity is
further confirmed through a Monte Carlo analysis. Specifically,
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Fig. 9 illustrates the Monte Carlo Histogram based on N
= 100 points, providing further insights into the circuit’s
robustness and performance characteristics It has a mean value
of µM = 95.98% and a standard deviation of σM = 1.37%.

Fig. 7: The layout of the proposed architecture.
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Fig. 9: Post-layout Monte-Carlo simulation results of the proposed
architecture on the hepatitis disease recognition dataset with µM =
95.98% and a standard deviation of σM = 1.37%

V. COMPARISON AND DISCUSSION

In the realm of current literature, it is evident that a
significant portion of analog classifiers is customarily designed
to cater to particular applications. This circumstance poses a
challenge when attempting to execute an unbiased comparison
across varied implementations. Nevertheless, this challenge
offers us the opportunity to modify analog classifiers to suit a
common application, thereby streamlining a performance eval-
uation encompassing both machine learning models and alter-
native methodologies Notably, Table III provides an overview

of the performance metrics of our study in conjunction with
comparable classifiers like ANN [16], Radial Basis function
[17], Multilayer Perceptron (MLP) [18], Long Short-Term
Memory (LSTM) [19], K-means [20], Bayesian [13], Gaussian
Mixture Model (GMM) [22], Fuzzy [21], Threshold [23],
Support Vector Machine (SVM) [24] and centroid-based [25]
all within the context of hepatitis disease recognition.

The proposed work presents an intriguing solution as it
offers a trade-off between accuracy, power, and energy con-
sumption per classification when compared to related analog
classifiers. It’s crucial to emphasize that, in this specific
application, the design is handling a high input dimension-
ality. The proposed topology provides a notable advantage by
eliminating the need for Principal Component Analysis (PCA),
allowing for the utilization of all 19 input dimensions without
any loss of information. To attain optimal accuracy, several
other topologies need to reduce the dimensions to 12, which
represents a notable limitation in previous related works, ex-
cept from the more complex models [16], [18]–[20]. While the
proposed classifier showcases the ability to accurately classify
more classes, we select a binary classification scenario for
fair comparison. This adjustment enables a more meaningful
comparison with binary analog classifiers [21], [23], [24].

In terms of classification accuracy, the proposed architecture
surpasses all related classifiers except for MLP [18] and LSTM
[19]. These models, while achieving higher accuracy, are
more complex and require more power and hardware area
(due to having more components). The Threshold classifier
achieves the lowest power consumption, albeit at the expense
of accuracy and processing speed, owing to its straightforward
model design [23]. It’s worth emphasizing that in biomedical
applications of this nature, rapid processing speed is not a
critical requirement, primarily due to their low occurrence
frequency. Consequently, in the proposed approach, processing
speed is intentionally reduced to enhance accuracy and opti-
mize power consumption performance. Furthermore, it boasts
lower energy consumption per classification compared to all
classifiers, with the exception of ANN [16], which achieves
lower classification accuracy.

VI. CONCLUSION

In this work, a low power (4.31µW ), low voltage (0.6V)
architecture of an analog Gaussian-based ANN classifier for
hepatitis disease recognition was proposed. The presented
architecture consists of a hidden layer with a Gaussian ac-
tivation function circuit, an output layer with a softmax
function circuit, and an argmax operator. The post-layout
simulation results were conducted utilizing the TSMC 90nm
CMOS process and were compared with both a software-based
implementation and a range of analog classifiers. The real-
ized architecture attains a classification accuracy of 96.42%
along with satisfactory sensitivity characteristics. It can act
as a fundamental component in diverse wearable biomedical
devices, particularly those with stringent power consumption
requirements.
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TABLE II: Analog classifiers’ comparison on the Hepatitis Disease Recognition

Classifier Worst
accuracy

Mean
accuracy

Best
accuracy

Power
consumption

Processing
speed

Energy per
classification

No. of
Dimensions

This work ANN 93.30% 96.42% 99.40% 4.31µW 1.2M classifications
s

3.59 pJ
classification

19

[16] ANN 91.70% 94.78% 97.90% 3.12µW 14M classifications
s

0.22 pJ
classification

19

[17] RBF 86.90% 90.12% 92.90% 29.43µW 200k classifications
s

147.15 pJ
classification

12

[18] MLP 94.70% 97.48% 99.70% 434.32µW 930k classifications
s

466.97 pJ
classification

19

[19] LSTM 97.30% 99.12% 100.00% 31.21mW 870M classifications
s

35.87 pJ
classification

19

[20] K-means 91.90% 95.87% 97.70% 138.42µW 5M classifications
s

27.68 pJ
classification

19

[21] Fuzzy 88.30% 93.55% 97.30% 2.49µW 4.55K classifications
s

547.2 pJ
classification

12

[22] GMM 87.30% 90.44% 93.40% 3.14µW 100K classifications
s

31.4 pJ
classification

12

[13] Bayes 83.90% 88.33% 91.90% 1.94µW 100K classifications
s

19.4 pJ
classification

12

[23] Threshold 88.30% 89.21% 93.10% 1.09µW 100K classifications
s

10.9 pJ
classification

12

[24] SVM 89.90% 90.21% 91.20% 73.28µW 140K classifications
s

523.43 pJ
classification

12

[25] Centroid 91.20% 93.28% 96.70% 3.18µW 100K classifications
s

31.8 pJ
classification

12
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