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Abstract—In the realm of advanced machine learning, a
burgeoning paradigm, known as deep machine learning, has
emerged to address intricate, high-dimensional data in a struc-
tured manner, taking cues from biological inspirations. This
study contributes novel findings utilizing a recently introduced
deep learning framework, termed the Deep Spatio-Temporal
Inference Network. It is a discriminative architecture in deep
learning, amalgamates elements from unsupervised learning to
establish dynamic pattern representation, concurrently incorpo-
rating Bayesian model. The proposed inference is composed of
parallel-connected Mahalanobis distance circuits and a distance
comparator circuit. As a result, this work proposes a novel low
power (2.43µW ), low voltage (0.6V) analog architecture of a
Deep Spatio-Temporal Inference Network with application to
digit classification. Confirmation of the analog classifier’s effective
functioning is achieved through validation with a real-world
dataset (93.15% accuracy). The implementation of the proposed
architecture is executed within the TSMC 90nm CMOS process,
and its behavior is simulated utilizing the Cadence IC Suite.

Index Terms—Deep Spatio-Temporal Inference Network, digit
classification, low-power design, analog VLSI implementation

I. INTRODUCTION

Digital imaging technology has revolutionized the conven-
tional use of film by transitioning to a realm of bits and bytes
[1]. In this paradigm, the quality of an image is gauged by the
pixel count it possesses. The heightened resolution of an image
corresponds to an increased abundance of these diminutive yet
vividly coloured dots [2]. Unlike the traditional camera, which
relies on lenses to focus light onto film for image formation,
the digital camera employs an image sensor. This sensor, often
a CMOS or a charge coupled device (CCD), undertakes the
task of translating light into electric charges [2].

The CMOS image sensor, notably found in smartphones,
employs color-filter layers to impart hues, while photodiodes
perform the crucial role of converting light into electrical
signals [2], [3]. This amalgamation culminates in the creation
of a digital image, further refined through on-chip image
processing in certain applications such as artificial vision
and image recognition [3]. On the other hand, CCD image
sensors, a preferred choice in machine-vision systems, embody
transistorized light sensors on an integrated circuit [4]. These
sensors meticulously integrate received light, transmuting elec-

trons into the electrical signals that ultimately manifest as
video or still images in various formats [4]. This diversity in
sensor technology underscores their respective contributions
to distinct domains of visual technology.

Deep-learning neural networks excel across various appli-
cations, from speech recognition to self-driving cars [5]. They
succeed at deciphering complex patterns in datasets, often
surpassing human capabilities. In camera-related applications,
diverse neural network variants enhance image quality by
addressing blurriness, enhancing colours, and rectifying pixel
issues [6]. They also excel at specific tasks like isolating re-
gions of interest. For instance, in surveillance, these networks
create feature maps that highlight crucial parts of an image,
such as facial details or pedestrian counts [7]. This focused
approach reduces memory and computational demands, crucial
for resource-efficient edge applications.

The motivation is based on the power and area efficiency
requirements of image sensors [8], [9], this paper proposes a
new, power-efficient and analog hardware architecture for deep
learning that integrates principles from unsupervised learning
for dynamic pattern representation alongside Bayes inference.
This is called Deep Spatio-Temporal Inference Network. The
implemented network is a promising classifier appropriate
for battery dependent image smart sensor classification sys-
tems, since it achieves 93.15% accuracy. It is implemented
and confirmed on a measured digit recognition dataset [10].
The accuracy of the proposed implementation is confirmed
through post-layout simulation results obtained in a TSMC
90nm CMOS process and simulated using Cadence IC Suite.
This validation involves a comparison with a software-based
implementation. Furthermore, a comprehensive comparison
study between the proposed classifier and analog classifiers
is included for the sake of thoroughness.

The rest of this work is ordered in the following manner. In
Section II the the characteristics of the implemented network
are explained and a clarification of its mathematical founda-
tions is provided. The suggested structure and the fundamental
components of the proposed classifier are outlined in Section
III. The desired behavior of the implemented network is
verified via a digit classification dataset and a comparison
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with the software-based counterpart is presented in Section
IV. Section V provides a comparison study with related analog
classifiers. Section VI concludes this work.

II. DEEP SPATIO-TEMPORAL INFERENCE NETWORK
MATHEMATICAL MODEL

Deep Spatio-Temporal Infernce Network consists of mul-
tiple instances of an identical cortical circuit, referred to as
nodes [11]. Each node is a parameterized model that learns
through unsupervised learning. These nodes exist across all
hierarchy layers, aiming to grasp significant spatiotemporal
patterns shown in presented data [11]. The lowest layer nodes
take raw sensory input, e.g., image pixels, and continually
develop a belief state to characterize observed sequences.
Higher layers receive belief states from lower corresponding
layers. These beliefs across the hierarchy are utilized as
valuable features given to a classifier or regression learner,
which can be trained through supervised learning.

Firstly, the selected winning centroid relies exclusively on
the Euclidean distance [11], [12]. The distance dx between a
centroid x and an observed input o is represented as follows:

dx = ||o− µx||ψx. (1)

The clustering algorithm uses the starvation trace ψx to involve
centroids initially positioned far from dense areas in the
observation space. This helps centroids that might otherwise
never be chosen for updates due to their distant location.
This enables inactive or starved centroids to gradually adjust
their perceived distance to input vectors over time. When not
selected as the centroid, they decrease this apparent distance;
conversely, their apparent distance increases when they are the
selected centroid. The mean estimate of the winning centroid,
µx, is adjusted towards the present input along with the
estimated variance σ2

x in a combined manner so that:

µx ← µx + α(o− µx), (2)

σ2
x ← σ2

x + β[(o− µx)
2 − σ2

x], (3)

where α and β are positive numbers close to 0. Then, the
posterior distribution Pr(o|s) is derived by normalizing the
Euclidean distances between the input and every centroid s,
such that :

ns =

d∑
i=1

(oi − µi,s)
2

σ2
i,s

, (4)

ps =
ns
−1∑

s′∈S(ns′
−1)

, (5)

III. PROPOSED ARCHITECTURE

In this section, we analyze the proposed analog implemen-
tation of the Network. The architecture presented is versatile,
accommodating various numbers of classes, centroids, and
input dimensions. For the implementation of the Euclidean
distance function in equation (1), we employ a current-mode
Mahalanobis distance circuit [13], shown in Fig. 1. This
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Fig. 1: The Mahalanobis distance is approximated by the translinear
circuit which computes the Iin2
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Fig. 2: A Ncla-neuron Standard Lazzaro NMOS Winner-Take-All
(WTA) circuit.

circuit, which operates in a translinear fashion, embodies
the mathematical expression: Iin2 divided by Ir. Summation
within the current domain is straightforward, achieved by
connecting wires containing the currents to be summed.

Moving forward, the nearest centroid is determined through
a distance comparison circuit, specifically a Winner-Take-All
(WTA) circuit [14]. In a classification problem with Ncla

classes, the typical Lazzaro WTA circuit consists of Ncla

neurons. These neurons share a shared bias current, as depicted
in Fig. 2. Each sub-circuit in the WTA circuit corresponds to
an individual class. The WTA circuit effectively identifies the
class with the highest input current and assigns a non-zero
output current to the corresponding neuron. Simultaneously,
the remaining neurons receive an output current of zero.

The architecture of the proposed network, as depicted in
Fig. 3, is developed for a classification problem involving
Ncla classes and Nd features (input dimensions). The quantity
of centroids within each class is a hyperparameter, typically
determined through exploratory data analysis. In this gener-
alized schematic, each class comprises one centroid and Nd

input dimensions, illustrated in Fig. 3. The output of each
Mahalanobis distance circuit (MDC) describes each input di-
mension. The mathematical model, as described by equations
(4) and (5), involves the summation of Euclidean distances.
This summation is executed within each circuit, leveraging
current mirrors (CM) to minimize potential distortions in cal-
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culations that might arise from undesired effects on the output
currents of the Mahalanobis circuits. The classifier’s prediction
is denoted by the resulting output currents, characterized by
high or low values. The dimensions of the transistors are
equal to W/L = 3.2µm/1.6µm. Notably, all transistors in
the mentioned designs operate in the sub-threshold region,
with voltage source rails set as VDD = −VSS = 0.3 V and
Ir = 3nA.
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Fig. 3: Block diagram of a generic Analog Deep Spatio-Temporal
Inference Network with Ncla classes and Nd features. These classes
perform the summation of currents generated by the Nd MDC circuits
associated with each input. The final output is determined through a
WTA circuit, employing a current-mode representation.

IV. DIGIT RECOGNITION AND SIMULATION OUTCOMES

In this section, the proposed network is validated through
a testing on a digit recognition problem [10]. The architec-
ture presented herein is realized utilizing the TSMC 90nm
CMOS process in conjunction with the Cadence IC suite. The
power supply rails for the entire classifier are established at
VDD = −VSS = 0.3V . All simulation results are derived
from the layout, as depicted in Fig. 4, through post-layout sim-
ulations. This classification problem considers a handwritten
digit recognition task, which consists of Ncla = 10 classes
and Nd = 64 inputs. For comparison purposes, we have
reduced the number of classes to Ncla = 2, which consists
of 5 centroids per class (binary classifier, odd/even). The
dataset used is provided by Python’s Sklearn package [15]
and consists of 8x8 pixel images of digits. Each pixel consists
of a grayscale value between 0 and 16. The classifier receives
all relevant metrics directly. The required parameters for the
system are determined through the calculation of the mean
value, variance, and prior probability for each class.

To test the proposed classifier both in terms of classification
specificity and circuit’s behavior over PVT variations, two
separate tests are conducted on the layout. To address the
experimental variability, the results from 20 different training-
test iterations are presented in Fig. 5. The sensitivity of the
circuit is further validated through a Monte Carlo analysis.

More specifically, Fig. 6 illustrates the Monte Carlo Histogram
for N = 100 points.

Fig. 4: Layout of the proposed Deep Spatio-Temporal Inference
Network architecture based on the design methodology.
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Fig. 5: Classification results of the proposed architecture and the
equivalent software model on the digit recognition dataset over 20
iterations.
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Fig. 6: Post-layout Monte-Carlo simulation results of the proposed
architecture on the digit recognition dataset with µM = 94.87% and
a standard deviation of σM = 1.73%

V. PERFORMANCE SUMMARY AND DISCUSSION

This section aims to present a comparative analysis of
various analog classifiers developed by our research team. By
adjusting these classifiers to the same application as the one
tested in this work a fair and unbiased comparison can be
conducted. In Table I a performance summary is illustrated
for a Fuzzy [16], a Gaussian Mixture Model (GMM) [17], a
Bayesian [18], a Threshold [19], a Support Vector Machine
(SVM) [20] and a centroid-based [21] classifier.

Firstly, our work surpasses the performance of the related
analog classifiers in mean accuracy, processing speed, and
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TABLE I: Analog classifiers’ comparison on the Digit Recognition

Classifier Min
accuracy

Mean
accuracy

Max
accuracy

Power
consumption

Processing
speed

Energy per
classification

No. of
Dimensions

This work Spatio 89.10% 93.15% 97.20% 2.43µW 430K classifications
s

5.65 pJ
classification

64

[16] Fuzzy 85.20% 90.82% 95.10% 2.71µW 4.55K classifications
s

595,6 pJ
classification

13

[17] GMM 77.70% 83.72% 88.90% 3.38µW 100K classifications
s

33.8 pJ
classification

13

[18] Bayes 73.40% 81.75% 84.20% 2.08µW 100K classifications
s

20.8 pJ
classification

13

[19] Threshold 78.60% 82.55% 86.40% 1.21µW 100K classifications
s

12.1 pJ
classification

13

[20] SVM 84.40% 85.74% 86.90% 82.12µW 140K classifications
s

586.57 pJ
classification

13

[21] Centroid 86.30% 91.32% 95.40% 3.42µW 100K classifications
s

34.2 pJ
classification

13

energy consumption per classification. It is important to em-
phasize that, for this specific application, we have a high
input dimension number. The proposed topology offers a
distinct advantage in that it obviates the need for Principal
Component Analysis (PCA), enabling the utilization of all 64
input dimensions without any loss of information. To attain
optimal accuracy, the remaining topologies should truncate the
dimensions to 13. This is the main limitation of the previous
related works (specific number of input dimensions). While
our network demonstrates the ability to accurately classify
all 10 classes, we transformed the problem into a binary
classification scenario to facilitate a meaningful comparison
with binary analog classifiers [16], [19], [20].

VI. CONCLUSION

In this work, a new, power-efficient (2.43µW ), low supply
(0.6V) architecture of an analog Deep Spatio-Temporal Infer-
ence Network for digit recognition was proposed. The pre-
sented architecture consists of Mahalanobis distance circuits
and a distance comparator circuit. All post-layout simulation
results were obtained using the TSMC 90nm CMOS process
and were compared with a software-based implementation and
a variety of analog classifiers. The implemented architecture
achieves 93.15% classification accuracy and reasonable sen-
sitivity characteristics. It can serve as a fundamental building
block in intelligent sensor systems designed for image classi-
fication.
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