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Abstract—Skin detection is the process of identifying skin
pixels in a 2-D image or video. It is a vital part of today’s
Computer Vision technology and widely spread among appli-
cations including medical diagnosis, cryptographic protection,
localization tasks and human-machine interaction. To this end,
this work proposes a novel, low power (31− 35nW), low voltage
(0.6V), area-efficient (2098µm2), GMM-Based analog classifier
for skin detection. The architecture consists of bump circuits
and a Lazzaro Winner-Take-All circuit. The presented classifier
was designed and simulated in a TSMC 90nm CMOS process,
using the Cadence IC Suite. To verify the proper operation of
the proposed design, a real-world skin segmentation dataset is
used. To confirm the circuit’s accuracy, post-layout simulation
results were compared to a software-based implementation.

Index Terms—Analog VLSI implementation, Area-Efficiency,
GMM-Based Classifier, Low-Power design, Skin Detection

I. INTRODUCTION

Nowadays, Internet of Things (IoT) devices become increas-
ingly popular in diverse applications [1]. The backbone of
these applications is sensors and actuators, such as cameras,
colour and light sensors. A rising research topic in IoT domain
is Computer Vision, in which information is extracted from
images and videos [2]. There are various methods in which
machines are able to process their surroundings, which may
include objects, weather conditions or even people. That being
said, a pivotal and demanding field in Computer Vision is skin
detection [3].

Skin detection has a paramount role in a wide range of
applications [4]. This includes computer human interaction,
medical diagnosis or assistingly in more complex systems.
Human computer interaction benefits from skin detection by
enabling computers to identify humans. This is a especially
useful for human tracking, identifying hand gestures in sign
language or human-machine collaboration. In medical diag-
nosis, skin detection can be applied in detecting skin cancer
(e.g. Melanoma). Furthermore, skin detection methods can be
utilized in more complex systems; cryptographic protection
methods, like steganography, localization tasks (e.g. in face
recognition) or as a segmentation method in media featuring
humans.

All these related applications are in many cases imple-
mented by battery and area depended devices [5]. Due to
this fact, new computing paradigms have been introduced.
Combining edge [6] and analog computing [7] is a promising
solution since the information processing takes place closer
to the source (away from data centers), thus minimizing the
energy needed for data transferring. This combined with sub-
threshold techniques results in more power efficient systems
[8]. Given the wide range of skin detection applications and
motivated by their increased computation requirements, we
propose an ultra low power, area efficient analog classifier
for general purpose skin detection. The classifier is designed
in TSMC 90nm CMOS process and tested in a real-world
skin segmentation dataset, compared with a software based
implementation.

The remainder of this paper is organized as follows. The
background regarding ML-based skin detection and the pro-
posed hardware friendly modification of the GMM-based
classifier are explained in Section II. In Section III, the main
building blocks and the proposed architecture are presented. A
real-world skin detection dataset is used to confirm the proper
operation of the proposed classifier in Section IV. A com-
parison between hardware and software implementation and
sensitivity tests are also provided. Some concluding remarks
are given in Section V.

II. BACKGROUND

A. Skin Detection

Skin detection aims to successfully separate a skin pixel
from a non-skin one [9]. To this end, various algorithms have
been proposed that are primarily divided into two groups;
thresholding and ML algorithms [10]. The first use an explicit
and fixed boundary, which is in fact a benchmark to categorize
each pixel. This is a simple and intuitive method but depends
on adequate tuning in order to yield sufficient results. The
latter use a training set to build a predictive model, for instance
a Bayesian classifier, a binary logistic regression model, a
histogram-based model, a neuro-fuzzy inference system etc.

Regardless of the followed method, all algorithms share a
common ground. The first step is the selection of a colour code
appropriate for pixel segregation and secondly, they all classify
each pixel of the given image individually and independently979-8-3503-9958-5/22/$31.00 ©2022 IEEE
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of its neighbouring pixels. Some colour codes, commonly used
in digital image processing, are the RGB (Red-Green-Blue),
Y CbCr (Luminance-Red difference-Blue difference-Red) and
HSV (Hue-Saturation-Value) [11]. While the RGB (Red-
Green-Blue component) colour code is by far the most used
and well-known in digital image processing applications, the
Y CbCr and the HSV codes yield better results. This is mainly
due to RGB code failing to explicitly describe the brightness
of said pixel, resulting in classification inaccuracies during
different lighting conditions.

Opposing to this shortcoming, the Y CbCr and the HSV
codes separate brightness (luminance,Value) from colours.
Consequently, the Y or V component of each pixel can be
neglected, serving a dual purpose; it minimizes hardware
requirements and the skin classification becomes almost invari-
ant of the lighting conditions. Interestingly enough, combining
different colour spaces increases the accuracy of the detector.
However, this technique results in increased hardware require-
ments and processing times.

B. Hardware Friendly Modification of GMM-Based Model

In a typical GMM-based classifier [12], the probability of
a class being the winning one, given an input vector X , is
calculated as:

p(Cn|X) =
p(Cn)

p(X)

K(n)∑
k=1

w
(n)
k N (X|M (n)

k ,Σ
(n)
k ). (1)

Here, [n]N1 is the index of the class, N is the number of classes,
p(Cn) is the prior probability of the class n, p(X) is the
evidence probability of the input X , K(n) is a hyperparameter
indicating the number of subcategories in a class. The w(n)

k ,
M

(n)
k and Σ

(n)
k are the weight and the mean value and the

covariance matrices that describe the multivariate Gaussian
function belonging to class n and subcategory k. The index
(y) of the winning class is indicated as:

y = argmax
n∈[1,N ]

{p(Cn|X)}. (2)

The Hardware friendly implementation is applied when only
two classes are considered. In that case, the probability of only
one class (C1) is calculated and compared to a hyperparameter
threshold value (Ith) [3] to indicate the winning class as in:

y =

{
1 if p(C1|X) ≥ Ith
2 if p(C1|X) < Ith

. (3)

In practice, this modification halves the power and area
requirements of the classifier.

III. PROPOSED ARCHITECTURE

In this Section the analog, hardware-friendly topology of a
GMM-based classifier is presented. This architecture requires a
single multivariate Gaussian function circuit [13] and a simple
Winner-Take-All (WTA) circuit [14]. All transistors operate
in the sub-threshold region and the supply voltages are set to
VDD = −VSS = 0.3V .

Mn1 Mn2

Mn3 Mn4

Mp1 Mp2Mp3 Mp4

Mp5 Mp6

VDD

Ibias

Vin Vr

VDD
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Fig. 1: NMOS differential pair based Bump circuit. The bias current
Ibias and the voltage parameter Vr control the height and the mean
value of the produced Gaussian curve (Iout), respectively. The PMOS
variant is built accordingly (shown in Fig. 2).

An univariate Gaussian function circuit produces a single
output current that represents a Gaussian function [13]. A
NMOS differential pair based Bump circuit (NMOS-Bump) is
shown in Fig. 1 and its transistors’ dimensions are summarized
in Table I. By utilizing Bump circuits the process of deriving a
multivariate Gaussian is simplified. In particular, the cascaded
connection of Bump circuits; biasing each Bump circuit with
the output current of the previous one, realizes a multivariate
Gaussian function circuit [15], [16]. In this work, the area
efficiency of this topology is enhanced by alternatively using
the NMOS and PMOS based variations of the Bump circuit.
By doing so, the current mirror of a Bump circuit can be
ignored as depicted in Fig. 2.

Mn1 Mn2Mn3 Mn4
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Mp1 Mp2Vin2 Vr2

Mn1 Mn2
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Ibias

Vin1 Vr1

VDD
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NMOS BUMP PMOS BUMP

Fig. 2: A 2-D Bump circuit built by sequentially connecting two 1-D
Bump circuits. The PMOS current mirror of the second Bump circuit
is removed.

TABLE I: MOS Transistors’ Dimensions (Fig. 1).

Block W/L
(µm/µm)

Current
Correlator

W/L
(µm/µm)

Mn1-Mn2 0.4/4.8 Mp1-Mp2 1.6/1.6
Mn3-Mn4 0.4/0.4 Mp3-Mp6 0.8/1.6
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A 2-input WTA circuit is required to extract the final
decision by indicating the highest among two input currents
[14]. This is achieved through the WTA’s two output currents
that are in binary format. Specifically, the output current that
corresponds to the highest input one has a logical high value,
whereas the other has logical low value. This topology is
presented in Fig. 3, in which all transistors’ dimensions are
set as W/L = 0.4µm/1.6µm.

Ibias
Vss Vss

Mn1 Mn2

Mn3 Mn4

Iin1 Iin2Iout1 Iout2

Fig. 3: A 2 input Lazzaro WTA circuit. Its operation is identical to
a comparator.

The proposed classifier is designed for a 2-classes and 2-
features classification problem, but is scalable regarding the
input features. Following the hardware-friendly modification,
proposed in Section II, only the probability of 1 class is calcu-
lated. The current representing this probability is compared to
a constant threshold current using the WTA circuit. The value
of this thershold current directly affects the decision boundary
of the classifier. Its architecture is presented in Fig. 4.
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VDD
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VSS
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Iout1

Iout2

 Ithreshold

Decision Boundary

Fig. 4: The proposed Analog GMM-based classifier. (left) Multivari-
ate Bump circuit and Decision Boundary current (right) WTA circuit.

IV. SKIN DETECTION EXAMPLE AND SIMULATION
RESULTS

A real-world skin segmentation dataset is used in order to
validate the proper operation of the proposed classifier [17].
In particular, the database was created by University of Texas
at Dallas (Productive Aging Laboratory). It consists of RGB
values from faces images of diversity of age, gender, and race
people. From the dataset, the RGB features were converted
to Y CbCr. In literature, it is a common practice to remove
the Y (or V ) feature in skin detection problems [11]. The 2
remaining features are used to train and validate the classifier.

Two separate tests are executed in a TSMC 90nm CMOS
process using the Cadence IC suite, in order to verify the
proper operation of the proposed classifier. Both tests were
conducted on the layout, which is presented in Fig. 5. The
first test compares the hardware and software implementations
in terms of classification accuracy. As shown in Fig. 6 and 7
, in which 20 different training test iterations are presented,
the post-layout simulation results are highly accurate (summa-
rized in Table II). To confirm the sensitivity of the proposed
architecture a Monte Carlo analysis for N = 200 points was
conducted (the used features were CbCr). The Monte Calro
histogram, shown in Fig. 8, has a mean value of µM = 0.91
and a standard deviation of σM = 0.11.

To further illustrate the performance of the presented classi-
fier, 3 extra architectures were designed and simulated. More
specifically, Case 1 and Case 2 is the proposed architecture
(shown in Fig. 4) for HS and CbCr features respectively,
Case 3 is a two-class one-cluster CbCr GMM classifier [16],
Case 4 is the same architecture as the first one but with one
extra feature (Y ) and Case 5 is exactly the same as the former
one, but with RGB features. The simulations result of the 4
architectures are summarized in Table III.

53.55 μm

39
.1

9 
μm

Fig. 5: Proposed Classifier’s Layout.

V. CONCLUSION

A hardware-friendly analog GMM-based implementation
was introduced in this work, as a low-power (31−35 nW) and
area-efficient (2098µm2) skin detection circuit. The design
methodology which was followed, is based on miniaturization
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Fig. 6: Comparison between hardware (post-layout simulation) and
software implementations over 20 iterations for the proposed classi-
fier, for CbCr .

Fig. 7: Comparison between hardware (post-layout simulation) and
software implementations over 20 iterations for the proposed classi-
fier, for HS.

TABLE II: Accuracy Results (over 20 iterations).

Method Best Worst Mean Std.

Software (HS) 0.998 0.988 0.993 0.003
Proposed (HS) 1.0 0.990 0.995 0.003

Software (CbCr) 0.983 0.963 0.974 0.006
Proposed (CbCr) 0.960 0.928 0.940 0.009

Fig. 8: Post-layout Monte Carlo sensitivity analysis histogram for
N = 200 points.

and sub-threshold region techniques. The classifier’s compo-
nents are Bump and WTA circuits. Since it has a high accuracy
and appropriate sensitivity, it can be used as the main building

TABLE III: Performance Summary

Architecture Software
Accuracy

Hardware
Accuracy

Power
Consumption

No. of
Transistors

Case 1 0.993 0.994 31nW 22

Case 2 0.974 0.940 35nW 22

Case 3 0.979 0.925 78nW 40

Case 4 0.981 0.954 56nW 30

Case 5 0.666 0.621 50nW 30

block in face recognition systems. To confirm the proper
operation of the proposed architecture post-layout simulation
results are conducted in a TSMC 90nm CMOS process, using
a skin segmentation dataset.
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