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Abstract—This paper introduces an analog front-end classifi-
cation system designed to function as a wake-up engine for digital
back-ends, with a specific focus on predicting epileptic seizures.
Accurate seizure prediction is crucial for enhancing the patient’s
quality of life, as seizures can lead to debilitating consequences
and, in severe cases, even fatalities. Existing solutions often rely
on power-hungry embedded digital inference engines, consuming
considerable amounts of energy, ranging from several µW to mW.
To address this limitation and extend the autonomy of embedded
devices, we propose a novel approach of a parallel-connected
threshold binary classifier, tested on a real-world epileptic seizure
dataset. It consists of parallel-connected Gaussian function and
Winner-Takes-All circuits. The classifier is designed to be chip-
area efficient, operating at minimal power consumption (93 nW),
and at a low supply voltage (0.6V), enabling continuous long-term
operation. The proposed system is designed and simulated using
the Cadence IC Suite in a TSMC 90nm CMOS process, achieving
a good specificity of 70%.

Index Terms—Analog VLSI, Ultra-low Power design, Epileptic
Seizure Prediction, Wake-up circuit, Threshold Classifier

I. INTRODUCTION

Advancements in wearable technology have led to the
emergence of efficient devices suitable for diverse Internet
of Things (IoT) applications [1]. Among the areas of inter-
est in the IoT domain, biomedical engineering stands out
as a popular research topic [2]. IoT-based wearable sensors
offer a cost-effective, reliable, and energy-efficient solution
for clinical patient monitoring and disease detection [3]. An
illustrative example of such monitoring involves the use of
electroencephalogram (EEG), where metal discs (electrodes)
are placed on the scalp to measure brain electrical activity [4].
Continuous EEG monitoring can aid in predicting epileptic
seizures, identifying sleep disorders, detecting brain damage
resulting from head injuries and assessing anesthesia levels
during surgery [4].

The utilization of IoT-wearable devices with real-time mon-
itoring and interconnection capabilities enables the efficient
collection, sharing and management of patient-related informa-
tion including diagnosis, therapy, medication, recovery and in-
ventory [5]. By performing the necessary computations closer
to the patient (at the edge), these techniques facilitate reduced
response times and lower latency, a concept commonly known
as edge computing [6]. The reliance on battery-powered and
space-efficient devices necessitates the exploration of new
computing paradigms [7]. To address the challenges posed

by power consumption and high latency, edge computing,
when integrated with analog computing [8], emerges as a
promising solution. By leveraging physical laws that govern
the behavior of transistors, such as analog translinear circuits,
mathematical models can be approximated effectively [8].
This, in conjunction with the advantages offered by the sub-
threshold region, leads to the development of more power-
efficient architectures [9].

Many of the applications mentioned in the context rely on
devices that are dependent on battery power and limited in
chip area. In light of the increasing demand for area and
power-efficient devices, especially with growing computation
requirements, we propose an ultra-low power (93nW) analog
integrated and area-efficient threshold classifier suitable for
epileptic seizure prediction applications [10]. It is a promising
wake-up engine appropriate for power-hungry digital back-
ends, since it has high sensitivity (100%, accurately predicting
all 17 seizures) and good specificity (70%) The post-layout
simulation results, conducted in a TSMC 90nm CMOS process
and simulated using Cadence IC Suite, validate the accuracy
of the implementation by comparing it with a software-
based counterpart. Moreover, a comparison study between the
proposed classifier (wake-up circuit) and cascaded bell-shaped
classifiers is provided.

The remainder of this paper is organized as follows. Section
II provides an explanation of the mathematical background
related to the proposed analog integrated threshold classifier.
In Section III, the main building blocks and the proposed
architecture of the classifier are presented. The validation
of the proposed classifier is carried out using a real-world
epileptic seizure dataset in Section IV. This section also
includes a comparison between the hardware and software
implementations, along with sensitivity tests. A comparison
study and discussion is provided in Section V. Finally, Section
VI presents concluding remarks summarizing the findings and
implications of this study.

II. THRESHOLD CLASSIFIER WITH LINEAR COMBINATIONS
OF GAUSSIAN FUNCTIONS

Threshold classifiers, which are simplified versions of Sup-
port Vector Machines (SVMs), are employed in practice to
handle situations where classes are not inherently linearly sep-
arable [11]. By utilizing a non-linear transformation function,
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denoted as C(), these classifiers can convert the data into a
higher-dimensional feature space, where the classes become
linearly or almost linearly separable. A threshold value, Ith,
is then tuned to distinguish between the classes effectively.
The decision rule of the threshold classifier is as follows:

y =

{
1 if C(X) ≥ Ith
2 if C(X) < Ith

, (1)

where y is the prediction of the classifier and X is a given
input vector. The straightforward nature of this architecture
makes it highly suitable for hardware implementations, as it
effectively reduces chip area without compromising classifica-
tion accuracy.

In this work, in order to describe each sub-class with
one feature (1 − D Gaussian function) the mathematical
model is described by a summation of univariate Gaussian
functions (parallel-connected Gaussian function circuits) and
it is approximated by:

C(X) =
K∑

k=1

{Ci(X)}. (2)

In our implementation, Ci() is chosen to be a univariate
Gaussian function, given by:

Ci(X) =
1√
2πσ

e
(X−µi)

2

σ2
i . (3)

Here, µ and σ are the mean value and covariance matrices
of the Gaussian function. The Gaussian function is preferred
over other options because it is straightforward to implement.

III. PROPOSED ARCHITECTURE

The topology of the analog threshold classifier along with
its basic building blocks is presented in this Section. For this
implementation, parallel connected Gaussian function circuits
[12] and a Winner-Takes-All (WTA) circuit [13] are necessary.
The entire classifier operates with the supply voltage set to
VDD = −VSS = 0.3V and all transistors are biased in the
sub-threshold region.

Each Gaussian function circuit, shown in Fig. 1, is used
to generate an univariate Gaussian function curve. The Bell-
shaped circuit is composed of a symmetric current correlator
(transistors Mp1 to Mp6) in order to produce symmetric
Gaussian curves even for small bias currents. Its electronic
tuning capability grants precise control over the non-linear
transformation function, offering flexibility and accuracy in
its behavior. The transistors’ dimensions for one Bump circuit
are summarized in Table I.

TABLE I: MOS Transistors’ Dimensions (Fig. 1).

NMOS W/L
(µm/µm)

PMOS W/L
(µm/µm)

Mn1,Mn4 1.6/0.4 Mp1,Mp2 1.6/1.6
Mn2,Mn3 0.8/0.4 Mp3-Mp6 0.4/1.6
Mn5-Mn8 0.4/1.6 - -
Mn9,Mn10 1.6/1.6 - -

✄ ☎ ✠

✄ ☎ ✞

✄ ☎ ✡

☛

☞ ✎

☛

☞

✏ ✑ ✒

✄ ☎
✟
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✓

✄ ☎
✔

✒ ✑ ✏

✄ ☎ ✠ ✠

✜
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Mn7
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✄ ☎
✔Mn10Mn9Mn8

Fig. 1: Univariate Gaussian function circuit. The mean value, variance
and height of the Gaussian function are tuned by parameter voltages
Vr and Vc, along with the bias current Ibias. The voltage Vin is the
input to the system.

The Winner-Takes-All (WTA) circuit employed in this study
functions as an argmax operator, indicating the largest of its
inputs. Fig. 2 illustrates a 2-input WTA circuit, in which a
constant current is fed as a bias to its second input. As a
result, it effectively operates as a current-mode comparator.
In the context of our application, this WTA circuit plays
a significant role since it is responsible for extracting the
classifier’s prediction. All transistors’ dimensions are set to
W/L = 0.4µm/1.6µm.

✄ ☎
✟Mn2 ✄☎

✟Mn3

✄☎
✟Mn1

VSS

✜

✢ ☞ ✣ ✤

Iin1
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Iout1 Iout2

✄ ☎
✟Mn4

VSS

✜

✢ ☞

Iin2

✁ ✁

VDD

Ibias
✁ ✁

VSS
✁

VDD VDD

Fig. 2: An 2-neuron Standard Lazzaro NMOS WTA circuit.

The proposed threshold classifier architecture is presented in
Fig. 3. It is initially designed to handle a 2-class and 4-feature
classification problem. However, it possesses scalability in
terms of accommodating input features. In this case only the
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probability of one class is calculated. The resulting current
representing this probability is then compared to a fixed
threshold current using the WTA circuit. It is important to note
that the value of this threshold current has a direct impact on
the classifier’s specificity (detecting true-positive).

Class 1

Iclass1

VSS

WTA
Iin1

Iin2

Iout1

Iout2

Ibias

VDD

Iout1

VDD

Vc1

Vr1

Vin1
Bump 1

VDD

Ibias

VSS

I1

I2Decision Boundary

Ithreshold

Iclass2

CM

Ibias

VDD

Iout4

VDD

Vc4

Vr4

Vin4
Bump 4

CM

...

VSS

...

Fig. 3: The proposed classifier’s top-level architecture

The proposed implementation utilizes a sum of 4 univariate
parallel-connected Gaussian function circuits for the non-
linear transformation. The output current of each one of these
circuits represents the probability of the input vector to belong
to the class according to the corresponding feature. Then,
the calculated probabilities of one class are summed through
current mirrors (CMs) and the result is finally compared to
the threshold current denoted as Ithreshold. The classifier’s
prediction is described by the output current I1 of the WTA
circuit. The current I1 is in binary representation, where a
logical 1 (high current value) indicates that the first class is
the winner, whereas a logical 0 (low current value) signifies
the second class as the winner.

IV. EPILEPTIC SEIZURE PREDICTION APPLICATION AND
SIMULATION RESULTS

To test the threshold classifier, a real-world epilepsy seizure
prediction problem is applied [10]. The data used in this study
are obtained from the CHB-MIT Scalp EEG database [10]
and it comprises EEG signals recorded from children with
intractable epilepsy. Expert physicians have provided labels for
the ictal periods which correspond to the periods of seizures.
For this analysis, pre-ictal and post-ictal periods are defined as
one hour before and one hour after the seizure, respectively.
Data samples that do not fall within the ictal, pre-ictal, or
post-ictal periods are labeled as inter-ictal. A high sensitivity
score is crucial for the patient’s health, as it ensures that all
upcoming seizures will be predicted accurately. Also, another
metric is specificity, which is the ratio of the time that the
digital back-end is idle to the duration of all the inter-ictal
periods (no risk for seizure).

To test the proposed classifier both in terms of classification
specificity and circuit’s behavior over PVT variations, two

separate tests are conducted on the layout presented in Fig.4.
To address the experimental variability, the results from 20
different training-test iterations are presented in Fig. 5. The
sensitivity of the circuit is further validated through a Monte
Carlo analysis. More specifically, Fig. 6 illustrates the Monte
Carlo Histogram for N = 100 points. The outcomes from both
tests are summarized in Table II, providing a comprehensive
overview of the circuit’s performance and robustness.

Fig. 4: The layout of the implemented wake-up circuitry
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Fig. 5: Classification results of the proposed architecture and the
equivalent software model on the dataset over 20 iterations.
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Fig. 6: Post-layout Monte-Carlo simulation results of the proposed
architecture on the dataset.

TABLE II: Performance Results

Method Best Worst Mean Std.

Software 0.741 0.675 0.713 0.019
Proposed 0.732 0.648 0.7 0.021

Monte Carlo 0.742 0.648 0.698 0.022
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TABLE III: Analog classifiers’ comparison on the Epileptic Seizure Prediction

Classifier Min
accuracy

Mean
accuracy

Max
accuracy

Power
consumption

Processing
speed

Energy per
classification

Estimated
area

This work Threshold 0.648 0.7 0.732 93nW 320K classifications
s

0,291 pJ
classification

0.009mm2

[12] GMM 0.672 0.691 0.714 180nW 100K classifications
s

1.8 pJ
classification

0.026mm2

[14] Fuzzy 0.701 0.723 0.756 147nW 4.55K classifications
s

32,3 pJ
classification

0.073mm2

[15] Bayes 0.593 0.653 0.688 123nW 100K classifications
s

1.23 pJ
classification

0.014mm2

[16] Threshold 0.612 0.667 0.691 111nW 100K classifications
s

1.11 pJ
classification

0.010mm2

[17] SVM 0.688 0.703 0.742 3.24µW 140K classifications
s

23,14 pJ
classification

0.11mm2

[18] Centroid 0.632 0.656 0.695 355nW 100K classifications
s

3.55 pJ
classification

0.019mm2

V. ANALOG CLASSIFIERS SUMMARY AND DISCUSSION

This section aims to present a comparative analysis of
various analog classifiers developed by our research team. By
adjusting these classifiers to the same application as the one
tested in this work a fair and unbiased comparison can be
conducted. In Table III a performance summary is illustrated
for a fuzzy [14], a Gaussian Mixture Model (GMM) [12],
a Bayesian [15], a cascaded-connected Threshold [16], a
Support Vector Machine (SVM) [17] and a centroid-based [18]
classifier.

In contrast to the fuzzy [14] and SVM [17] classifiers,
the proposed architecture achieves a nearly identical mean
classification accuracy while consuming approximately 100
times less energy per classification making it a significantly
more energy-efficient choice. Moreover, it outperforms the
other analog classifiers in terms of mean accuracy and power-
and area-efficiency. It is important to emphasize that, for this
specific application, high classification accuracy (specificity)
is not a primary requirement because this circuit is used
as a wake-up engine for a digital back-end. The necessary
characteristic is sensitivity in seizure prediction (successively
detects all 17 epileptic seizures) where all classifiers achieve
100%.

VI. CONCLUSION

An analog integrated, ultra-low power (93nW), parallel-
connected threshold classifier was proposed in this work.
Its main building blocks are Bell-shaped circuits along with
an argmax circuit. A real-world epileptic seizure prediction
dataset was used to validate the classifier’s specificity. All
post-layout simulation results were obtained using the TSMC
90nm CMOS process and were compared with a software-
based implementation and a variety of analog classifiers. The
proposed wake-up circuit demonstrates a remarkable sensitiv-
ity of 100%, accurately predicting all 17 seizures in the test
set. Finally, it achieves a specificity of 70%.
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