
978-1-7281-1184-1/19/$31.00 ©2019 IEEE

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

A New Technique for Stochastic Division in

Unipolar Format

Nikos Temenos and Paul P. Sotiriadis

Department of Electrical and Computer Engineering

National Technical University of Athens, Greece

E-mail: ntemenos@gmail.com, pps@ieee.org

Abstract—Stochastic Computing (SC) is an alternative design-
ing technique where signals are processed non-deterministically.
Apart from low-area occupation and greatly reduced power
dissipation, SC is inherently fault tolerant due to its probabilistic
nature. Considering the aforementioned, SC has regained atten-
tion in system design where traditional Digital Signal Processing
(DSP) cores require demanding number of resources to perform
operations or are sensitive to soft-errors. However, specific
operations are considered challenging for implementation due to
the fact that processing elements are incapable of constructing
non-linear functions such as the division. In this work we
propose a new architecture that performs stochastic division in
unipolar format that produces direct stochastic output and lowers
the hardware requirements. Simulation results of Normalised
Mean Root Squared Errors (NRMSE) are provided in order to
demonstrate the accuracy of the proposed architecture as well
as the simplicity for implementation.

Index Terms—Stochastic Computing, Stochastic Divider,
Stochastic Circuits, Fault Tolerance, Low-Power Design

I. INTRODUCTION

Stochastic Computing (SC) was proposed in [1] as a system

designing technique where Digital Signal Processing (DSP)

elements process signals non-deterministically. Although at a

glance, the idea of performing operations stochastically may

not seem effective, SC has regained attention due to numerous

advantages it offers. First and foremost, SC is naturally fault

tolerant; soft-errors such as bit-flips do not affect the result

of a calculation. Furthermore, the implementation of basic

operations such as multiplication can be performed by a single-

gate, i.e. an AND gate. Finally, as a result of the low-area

occupation of processing elements, SC is also characterized

by low-power consumption.

Regarding the application level, SC is suitable in systems

where parallelization and high demand in hardware resources

are necessary [2]. In image processing, the algorithm perform-

ing edge detection can be applied in parallel blocks across an

entire image with low stochastic bit precision requirements

for signal representation [2], [3]. Furthermore, in the field of

Artificial Neural Networks (ANN), the implementation cost

is extremely challenging due to the large number of parallel

multipliers used in binary format [4]–[6]. Moreover, ANNs do

not require high precision results, rather than emphasize on

behavior, where SC is capable of following effectively [4]–

[8]. Another successful application for SC is decoding Low-

Density Parity-Check (LDPC) and other several modern error-

LFSR< A

B

A>B

C = 0,1,1,1,0,...

k

k
Binary number

clk
N

Fig. 1. Circuit for the Stochastic Number Generator (SNG)

correcting codes, where the sum and product units are present

[2], [3].

In order to represent data into the stochastic domain, a

Stochastic Number Generator (SNG) circuit to convert the bi-

nary number is required, as shown in Fig. 1. More specifically,

a pseudo-random number generator, which is implemented

as a Linear Feedback Shift Register (LFSR), is fed with an

initial k-bit binary number that produces a k-bit word which

is repeated every 2k − 1 clock cycles. Afterwards, the k-bit

word is compared with a selected binary number of the same

length in order to create the stochastic sequence of N = 2k

bits for further process [1], [9], [10].

The converted stochastic sequence, can be either a positive

or negative signed number. In SC, positive numbers are

represented in [0, 1] range, called unipolar format, whereas the

negative ones in [−1, 1] range, called bipolar format. Advanc-

ing to the computational elements, i.e. AND, OR, NOT, XOR

and MUX, their operation is based on fundamental boolean

algebra [1]. Moreover, according to the format used, each gate

implements a different function and thus the selection for the

number format can be intriguing. Therefore, it is expected

that specific arithmetic operations, such as division, can be

complicated due to the fact that they cannot be represented

effortlessly via set theory.

The theoretical model for division in SC was firstly pre-

sented in [1]. However, the aforementioned model suffers

from long computational cycles and demands large number

of resources to be implemented [3], [8], [11]. In this work we

propose a stochastic divider architecture in unipolar format

that uses a binary accumulator, which operates stochastically

in order to eliminate the former issues. In the section follows,

the probabilistic properties of conventional logic gates for

positive signed numbers are briefly described. In section III,

the proposed architecture that performs division is explained

and simulations to prove its operation are shown. Finally,

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

section IV, provides the conclusion.

II. PROBABILISTIC PROPERTIES OF LOGIC GATES IN

UNIPOLAR FORMAT

In this section, we provide a brief description of the stochas-

tic operation of basic logic gates in unipolar format, in order

to get a better understanding of how SC elements process data.

We assume that the finite stochastic sequence (word) rep-

resentation of a real number in [0, 1] is done by the output of

the SNG circuit, i.e. {Xn, n = 1, 2, ..., N}. Here {Xn} are

considered to be independent and identically distributed (iid)

Bernoulli random variables, N is the length of the stochastic

word and n is the time index. The Probability Mass Function

(PMF) of each random variable is given by:

pXn
(x) =

{

p, x = 1

q = 1− p, x = 0
. (1)

The value of a realization of word {Xn} is defined to be

the average of the ones in it, i.e.,

1

N
(X1 +X2 + · · ·+XN)

whose expected values is E[Xi] = p.Therefore, by increasing

the length of the word, N , also referred as stochastic precision

bits, the accuracy increases [1].

To describe the probabilistic behaviour of the following

logic gates, we denote their two inputs as X and Y and

their output as Z, where X and Y are random independent

variables.

A. NOT Gate

The output of the NOT gate, i.e. Z = 1−X , has expected

value

Pr(Z = 1) = Pr(X = 0) = 1− Pr(X = 1) (2)

and achieves the probability complement.

B. AND Gate

The AND gate Z = X · Y can be seen as a multiplication

and has expected value

Pr(Z = 1) = Pr(X = 1, Y = 1) = Pr(X = 1) · Pr(Y = 1).
(3)

C. OR Gate

The OR gate can be expressed as Z = X + Y −X · Y and

results in output expected value

Pr(Z = 1) = Pr(X = 1) + Pr(Y = 1)− Pr(X = 1, Y = 1)

= Pr(X = 1) + Pr(Y = 1)

− Pr(X = 1) · Pr(Y = 1) (4)

D. XOR Gate

The XOR gate is written as Z = X + Y − 2 · X · Y and

results in output expected value

Pr(Z = 1) = Pr(X = 1) + Pr(Y = 1)

− 2 · Pr(X = 1, Y = 1)

= Pr(X = 1) + Pr(Y = 1)

− 2 · Pr(X = 1) · Pr(Y = 1) (5)

E. MUX Gate

In the MUX gate, the select signal S is also assumed to be

a Bernoulli random variable independent of the inputs. Then

the output Z = S ·X + (1− S) · Y has expected value

Pr(Z = 1) = Pr(S = 1) · Pr(X = 1)+

(1− Pr(S = 1)) · Pr(Y = 1) (6)

Therefore, the MUX operates as a scaling adder, with the

special case of Pr(S = 1) = 1/2 giving

Pr(Z = 1) =
Pr(X = 1) + Pr(Y = 1)

2
(7)

III. STOCHASTIC DIVISION

In this section we discuss the principle of stochastic division

as it was introduced and we proceed with our proposed

architecture along with simulation results.

A. Proposed Stochastic Divider

The stochastic divider was first proposed by Gaines in [1]

as shown in Fig. 2, where Xn and Yn are the two inputs for

division and Zn is the output with Zn = Xn/Yn. The main

concept is to create a feedback loop from the output Zn and

multiply with Yn in order to remove the division operation,

resulting in Xn = Zn · Yn = Un.

Xn

Yn

Zn

Un

k-bit

Up/Down

Counter

LFSR
<

clk
k

>

k
1

SNG

Fig. 2. Original Divider introduced by Gaines

The processing is based on a k-bit up/down counter, where

the simultaneous appearance of Xn = 1 and Un = 0, increases

the accumulator by 1 bit, whereas the reverse case Xn = 0
and Un = 1 decreases by 1 bit. On any other combination of

inputs, the counter value remains unchanged. Then, a SNG is

used to convert the binary value of the counter into a stochastic

one and the procedure is restarted until the system achieves

equilibrium.

However, the model is impractical due to the following

reasons; the additional required SNG increases the total area

for implementation significantly [9], [10] and the converge

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

time to the approximate result can be long [3], [12]. In order

to avoid the aforementioned issues, we propose the stochastic

divider shown in Fig. 3. In our configuration, we consider an

accumulator which transitions between M states given by state

space Sn ∈ {0, 1, ...,M − 1}, where each state Sn represents

the position of a one-hot encoded M -bit register.

Once again, the simultaneous appearance of Xn = 1 and

Un = 0, increases the accumulator by 1-bit while Xn = 0
and Un = 1 decreases by 1-bit. Moreover, the uniqueness of

the proposed scheme is that the increments and decrements

in the accumulator, are implemented as left and right shifts

in the M -bit register and thus the traditional binary operation

is eliminated completely. Furthermore, we use an additional

delay register in order to avoid correlation of Zn [1]. As a

result, the proposed architecture converges to the approximate

result after N clock cycles and achieves a decrease in overall

hardware resources required.

Left shift

 1-bit

Right shift

 1-bit

M-bit

Reg

Xn

Yn

Sn>0

D

M
Un

1

Zn-1

Zn

Fig. 3. Proposed Stochastic Divider

B. Simulation Results

In this subsection, we prove the functionality of the pro-

posed stochastic divider architecture with simulations using

Matlab. In order to capture all possible values for division

in the range of [0, 1], we generate two signals under the

assumption of E[Y] > 0 and 0 < E[X]/E[Y] <= 1. To

achieve the aforementioned, we consider a sweep where the

inputs of the expected values increase simultaneously, with

E[X] = 0.1 : 0.1 : E[Y] and E[Y] = 0.1 : 0.1 : 0.9. As a

result, we have ensured that the expected result will not reach

infinity due to possible appearance of E[Y] = 0.

Since the input signals are stochastic, it is reasonable to

perform a sufficient number of calculations in order to obtain

the error behavior for each different division pair tested. For

this reason, we consider the Normalised Root Mean Squared

Error (NRMSE) between the stochastic and the deterministic

division, namely:

NRMSE =

√

√

√

√

K
∑

i=1

(Di − SCi)

K

2

D
(8)

where K = 10, 000 and denotes the number of iterations

performed for each generated division pair of E[X] and E[Y].
In Fig. 4, the results for the aforementioned procedure are

shown for N = 128-bit stochastic precision. Notice that it

is more difficult to perform the operation when the expected

values are relatively close to each other and close to zero as

well, for example E[X] = E[Y] = 0.1 with corresponding

NRMSE of 0.3. On the contrary, for expected values with

higher frequency of logic ′1′s, the proposed architecture per-

forms division without affecting the calculation result, with

typical NRMSE values of < 0.1. Moreover, we provide with

the corresponding NRMSE results for N = 256-bit precision,

as shown in Fig. 5. Notice that the highest error values are

reduced. Therefore, it is evident that when the stochastic

precision increases, the NRMSE decreases.

0

0.05

0.1

0.15

0.2

0.25

0

0.3

0.35

0.4

N
R
M
S
E

y 0.5

x

1 00.20.40.60.81

Fig. 4. NRMSE for N = 128 stochastic precision

0

0.05

0.1

0.15

0.2

0

0.25

N
R
M
S
E

y 0.5

x
1 00.20.40.60.81

Fig. 5. NRMSE for N = 256 stochastic precision

We also performed simulations in order to investigate the

minimum allowable size of the accumulators’ M -bit register in

order to avoid overflows. The procedure explained in previous

paragraph was repeated and the stochastic precision was set

in powers of two, namely N = 64, 128, 256, 512, 1024. The

results for selected precision bits are cited in Table I.

2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST)

TABLE I
ACCUMULATOR M -BIT REGISTER SIZE

Bit Precision N 64 128 256 512 1024

Register Size 12 14 19 21 23

C. Accumulator Bit-Level Example

In the final subsection, we examine the stack of the accumu-

lator with a bit-level procedure, under two case scenarios for

N = 10-bit precision, as presented in table II. In the first case,

we assume that the spreading of logic ′1′s is ideal whereas in

the second one, bit-overflow occurs due to insufficient M -

bit register size. In the first case, the expected values for

division are E[X] = 0.7 and E[Y] = 0.8, with result of

E[Z] = 0.8. Although the expected value is close to the desired

one E[Z] = 0.875, the inadequate number of precision bits

as well as the non-linear nature of division, contribute in the

deviation of the result. In the second case, the two input signals

were set intentionally with such spreading of ′1′s in order

to introduce overflow. The expected values are respectively

E[X] = 0.7 and E[Y] = 0.9. Notice that the final pair of

logic ′1′s is responsible for overflow with the result being

E[Z] = 0.7 instead of E[Z] = 0.7777 ≃ 0.8, which is closer

to the desired.

TABLE II
STOCHASTIC DIVISION EXAMPLE

Case: 1

Outputs N No. Bits Overflow

Bit 1 2 3 4 5 6 7 8 9 10

x 1 1 1 1 1 1 1 0 0 0
y 0 1 0 1 1 1 1 1 1 1
z 1 1 1 1 1 1 1 1 0 0

Accumulator 1 1 2 2 2 2 2 1 0 0 0

Case: 2

Outputs N No. Bits Overflow

Bit 1 2 3 4 5 6 7 8 9 10

x 0 0 1 1 1 1 0 1 0 1
y 1 1 1 1 1 1 1 1 0 1
z 0 0 1 1 1 1 1 1 0 1

Accumulator 0 0 1 1 1 1 0 1 0 1 1

IV. CONCLUSION

In this work an optimization technique in order to im-

plement the operation of division in Stochastic Computing

was presented. The primary objective was to replace the

SNG circuit as well as the k-bit up/down counter logic with

a costly-efficient one in terms of hardware implementation

requirements. Simulation results demonstrate that the pro-

posed architecture can achieve satisfactory results in terms

of NRMSE, for the majority of the calculations tested at

realizable precision. Moreover, simulations also provided the

sufficient register M -bit size for various stochastic precision

levels. In conclusion, our configuration can be considered

in SC applications that approach division, such as Neural

Networks, where low-area specifications are essential.

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems. Springer, Boston, MA,
1967.

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 12, no. 2,
May 2013.

[3] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1515 – 1531,
Aug. 2018.

[4] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“Vlsi implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 10, pp. 2688 – 2699, Oct. 2017.
[5] B. D. Brown and H. C. Card, “Stochastic neural computation i: Com-

putational elements,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 891–905, Sep. 2002.

[6] ——, “Stochastic neural computation ii: Soft competitive learning,”
IEEE Transactions on Computers, vol. 50, no. 9, pp. 906–920, Sep.
2002.

[7] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic
circuits for efficient training of learning machines,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2530 – 2541, Nov. 2018.

[8] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in IEEE 31st International Conference on Computer Design

(ICCD), Asheville, NC, USA, Oct. 2013.
[9] M. Yang, B. Li, D. J. Lilja, B. Yuan, and W. Qian, “Towards theoretical

cost limit of stochastic number generators for stochastic computing,”
in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong
Kong, China, Jul. 2018.

[10] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact and
accurate digital filters based on stochastic computing,” IEEE Transac-

tions on Emerging Topics in Computing, to be published.
[11] A. Alaghi and J. P. Hayes, “Fast and accurate computation using

stochastic circuits,” in IEEE Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, Germany, Mar. 2014.
[12] T. Chen and J. P. Hayes, “Design of division circuits for stochastic

computing,” in IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Pittsburgh, PA, USA, Jul. 2016.

