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ITepiAndn

Y1oyoc NG mapoucag SimAwUATXNG eivan 1) oy ediooT) Uidg AEYITEXTOVIXAC OVa-
AOYIXOV ONOXANPOUEVDY HUXAWUATWDY YAUNAAC HATAVIAWONG Xt TAONG TEO-
godoaioc 0.6V yio Tnv uhonoinon evog akyoptduou Support Vector Machine
ue weovotnTa yioo on-chip uddnon. H apyitextovinr Tou cuctAuaTog xon To
Boaowxd dopxd TS HUXAWUATIXG UEPT AVORDOVTOL, EVE) XOUVOTOUES XUXAWUOTL-
XEC APYLTEXTOVIXES TPOTEVOVTOL YLOl TNV UAOTOINGT) TOAUMETOUBANTEOV 0XTIVIXWDY
ocuvapThoewy Bdone. H viomoinon auth topouctdlel ToAD younhn xaTovdAwon
oyvog, pe oha 1o TpavlioTop var Aettoupyoly oTny TEpLoy Y| utoxatw@ilov. H
TPOTEWVOUEVT] APYLTEXTOVIXT] EXTEAEL TGO TNV Bladwacta TN pdinong 6co xou
oUTH TNS TAEVOUNONG HE EVOY ATOXAELTTIXA avohoYxd xou palixd TapdAAnio
Teomo. H amoteheoyatindtnta xou 1 axpifeia Tou cucTAaTog emBeBarveTan -
ATEAGVTAC TN Yddinon xan Ty tagvouncr tou SVM ue éva mparypoatixd dataset.
O eloodol Tou cuoTuaTog etvor Slaviouata 13 BlacTUCEWY OTN Lop)T Avaho-
Yoy tdoewv. H axpifeio tne tadvounong amoxAivel and authyv plag xAacoixhc
software ulomoinone tou SVM pévo xotd 1%. H npotewdpevn apyrtextovixn
vhonotfinxe oe teyvoroyio TSMC 90 nm CMOS process xa mpocouoldxdnxe
yenowornownvtog to Cadence IC Suite.

AéEeic KAedid: Support Vector Machine, analog hardware arch-
itecture, on-chip learning, on-chip classification, Ultra-low power
design, Gaussian function circuit, subthreshold region, Fully tu-
nable implementation, analog multipier circuit, Winner-Take-All
circuit.






Abstract

This work presents an ultra low power, 0.6V power supply analog integra-
ted circuit architecture for the implementation of a Support Vector Machine
algorithm with on-chip learning capability. The system architecture and its
basic building blocks are discussed, with novel circuit architectures being
proposed for the implementation of multivariate Radial Basis Function Ker-
nels. This is an ultra low power implementation, with all transistors opera-
ting in the subthreshold region. The proposed architecture performs both
learning and classification in an exclusively analog and massively parallel
way. The efficiency and accuracy of the system is validated through perfor-
ming SVM learning and classification with a real dataset. The inputs of the
system vectors of 13 dimensions in the form of analog voltages. The classi-
fication accuracy diverges from a classic software SVM implementation by
only 1%. The presented architecture was realized in TSMC 90 nm CMOS
process and simulated using the Cadence IC Suite.

Keywords:Support Vector Machine, analog hardware architectu-
re, on-chip learning, on-chip classification, Ultra-low power desi-
gn, Gaussian function circuit, subthreshold region, Fully tunable
implementation, analog multipier circuit, Winner-Take-All circuit.






Euyaplotieg

H oloxifpwon tng noapodoag Aimhwpatixhc Epyaotag onpatodotel xou tnv
ONOXATPWOT) TV TEOTTUYLIXWY YOU OToUd®Y. 110 onueio autd Vo ficha va
ELYAPLOTAHCL TOLG VIPMTOUE TOU GTAVNHAY BITA LOU OE AUTO TO XOUUATL TNG
Comg pou.

Apywd, Yo Adeha va evyaplotiow Tov emBAénovTa xodnyntr wou, x. Ilo-
Oho IIETpo Ewtnelddn yio Ty mohdTun xadodnynon tou, T cLUBouAéc Tou
x9S XL TO TEAYHATIXG EVOLAPEPOV TOL ETEDELEE YL UEVAL WE POLTNTH XAl Yidt
T0 avTixelyevo g Aimwpatixhc pou Epyaciag. Mou 8dnxe €tol 1 moAdTun
euxonplor var aoy oo ue Eva olodtepa eVoLapépoy epeuvnTind Yéua o€ €va ToAD
UTOC TNEIXTIXO TEPLBAANOY.

Ytn ouvéyela, Yo fieha vo euyoplo THow Tov utoglo Sddxtopa Bactieio
Alrion v v avextiuntn ouvelogopd tou. H Aimhwpatixn avth Epyoaota
OTWG XL Ol OYETIXEG ONUOCLEVCEIC GE UEYTAO UEPOS TOUG OgellovToL OE ou-
TOV BLOTL amoTeEAOVY TO amoTéAeoua TN Xxadnueptvic wog ouvepyaoiag. Omote
6oeg euyaploTieg xou vor Tou Yeddo Yo elvon mpaypatind Ayeg. Oéhw e&icou
Vol euyoELoTHow Tov utodriglo BiddxTopa Xenoto AU Xo TOV BITAWUATIXG
portnth I'ewpyto I'évvn. Mall toug cuyxpotiinxe wa Eeywpeto T oudda ue dot-
61N cuvepyaoio N onola GUVERAAE xaoploTid 6TnY ohoxAfipwon e Epyaotog
ATAG.

Téhog, Yo ek Ve amd OAoL VoL EUYUPLOTACL TNV OWOYEVELL LoV, TOUG
O00g You avlp®TOUE Xl TOUG PLAOUC HOU YLl TNV ATEAELWTN oy dmn Xou TNV
oTARIEN Toug OAaL UTA Tl YEOVLAL.

I'oupdoundene Mdploc,
ToUvioc 2021
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Extetopevn EAAnvIxT
ITepiAndn

Ye autd To xe@dhano Va e€eTacTel CLVOTTIXG 1) ToEOVCN BITAWUATIXY EpYacia
péow plog extetapévne tepthndng oty eAnviny| Yhwooao. H dewentin| deue-
Awomn, 1 odnuoTixy avdAUGT), Tot AVAAUTIXG ATOTEAECUATA XADVWS Kol TEYVIXES
Aemtopépeleg Yo avaludoly exTeEVHS 6T0 ayyAxd xelpevo mou axoloudel. H
Topoloo eV tepthndn Yo emixevipwiel oty ousia TwvV aroteleoudTwy
X0l TNV ETUOTNUOVIXY| CUVELTQOEA TNG OLMAWUATIXNG AUTHS EpYsiag.

Ewooaywyn

H xatooxeur} utohoyio Tixmy unyavey o otolo Yo urmopoty vo avantiEouy tny
Outd Toug VoNuoo VY amoTehel €val SLoEXEC TovVoVIpMTILVO GVELRO XoL EVOLY ATO
TOUC XLRlIPYOUS ETLOTNUOVIXOVS X0 TEYVOAOYIXOUS OTOYOUS Tou TEAEuTaiou
aucove. H unyovies; pddnon (ML) opiletan ¢ 1 yerétn olyoplduwy xo oto-
TICTIXOY LOVTEAWY TIOU YENOUOTOL0VTAL YIoL TNV ETUTUYY| EXTEAEDT) EQYAOLOY
ywplc v €youv mpoypoupaTioTel pntd vor To xdvouv. H mpooéyyion tng un-
YOV UGUNoNG ETUTEENEL OTOL TTEOYPUUUATO UTOAOYLOTWY Vo TORAYOUV VEES
YVOOELS YwplS €Va CUYXEXPWEVO GUVORO OONYLOY, ARG YENOWOTOLOVTIS EVA
oUVORO BeryUdToVY Bedouévwy xou e€dyovtag yerowa potifo amd autd. Auty
1 YeVixeuoT YvoOong mpayuatomoleiton ywpeic avipmrivn tapéufact xou odrnyet
o€ AMOTEAEOUATIXTY) TROBAEYT 1} TAgVOUNGCT| VEWY TANROQORLOY ATd TO GUC TNUA
unyovixic wéinone. H pnyovind expdidnon (ML) yenowonoteiton w¢ Baocixd
gpyoheio o TANIWEO EPUPUOYWY GTOV GUYYROVO XOCUO, amd BLOtaTEIXES EQop-
HOYES €0C avary VOPRLOT) OUALG, aUTOVOUT] 001 YNOT Xl YeNUATIOTHRLO.

O oy oprduot unyavixrc udinone vAomoloUvToL Topadoctoxd € oAoxhpou
070 hoylouixd. 2otdc0, Ta BEGOUEVA TTOU AmOUTOUVTAL OO TI EQUPUOYES UM
yavixrc pdinong auidvovton otadepd ta teAeutaior ypdvio. Kodog ol gpyo-
oleg unyavixrc wdinone mepthapBdvouy €va TepdoTIO TOGO UTOAOYLOU®WY, 1)
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eqopuoyt) ohyoplduwy (ML) oe ohoéva xau peyohbtepne xAlpoxog mparypotind
TEOBAAUNTA YIVETOL LOOUTERMC ATMAUTNTLXY) OO0V APOEd. T UV U Xl TOUS UTOAO-
yioTxolg mopous. XTic mopadoctoxéc apyttextovxéc (CPU), ou hertoupyixol
OTOYOL OYETIG UE TNV YOUNAT) XATUVIAWOT EVEQYELS ot TNV TayOTNTA Act-
Toupyiog {nuiddvovton oe peydho Badud amd Ty avdyxn Yot CUVEYY UETAPOR
0eboPEVOLY YETAE) UVAUNG %o ETEEERYAUTTY.

Koddg oL xhaoinég apyttexTovinég UTOAOYIG TRV oy wVILOVTAL VoL AV TATOXEL-
Vo0V AmOTEAEOUATIXG OTIC CUVEYDC OUEAVOUEVES OTAUTHCELS TWV GUYYPOVKY
EQUPUOYOV UNYavXAS UdUnong, UTEEyEL Uiot TAon ovanTuéng eEelBIXEVPEVLY
QEYLTEXTOVIXGMY UAXOU Yla bhomooelg akyopituny MA mou avtaroxpivovtal
oe autolg Toug Teptoptopole. Tétolor emtayuvtéc uAixol(hardware accelera-
tors ) Yo umopoloay eniong va Thneoly Tic amottoElS TwV epappoy®y Internet
of Things (IOT), otic onolec 1 cuAIOYT, eneepyooio xou amoVxeuon dedo-
Hévey udmhrc TobTnTag xou youniic woybog (Laxpld omd xévtpo dedouévwy)
ebvon uiotng onuacioc. H enelepyacia mhnpogpopundy on-chip ywelc Tnv avdyxn
UETOPORASC BEGOUEVLV EVIGYVEL CNUAVTIXG TNV AVATTUEY EEUTVWY GUC TNUATWY
aoINThRenY youniic xaductépnone xou Yeyding didpxetag {owhg uratoplag.

Unpraxée apyttextovixée Paociloueveg o Field-Programmable Gate Ar-
rays (FPGAs) avantiooovton pe peydhn mpoddo xat emtuyio yio Ty emtdy-
yuvon Badiwy Nevpwvixdv Amtiwy. Extoc and autéc Tic eupéwe dladedo-
uéveg Pnpraxéc apyttextovixée, epeuvolvtal evahhaxTixég tpooeyyioeig yio h-
ardware ML accelerators mou nepthauBdvouv tn yerion avaloyixey xaL uxtol
ofuatog ohoXANEOUEVLY XLXALUATWY(IC). Ou apyttexTovixé avahoYIX®Y O-
AOUANPOUEVLY XUXAWUATOV €YOUV TO TAEOVEXTNUO TNG YOUNANG XUTUVAAWONS
evépyelag, palixd mapdhhniou uToloylouol xou @invic vAomolnong oe Pxed
XUt yopeo (area efficient). H axpiBric vhonoinon padnuatixdve cuvoe-
TACEWY X0l CUVETOS UTOAOYLOUWY ETUTUYYAVETOL Ydpn OTIC QUOLXES LOLOTNTES
Twv tpavlloTop, ue TNy TAnpogopla va eneepydleTal xou Vo UETHOIBETOL OE o
VOAOYIXT| HORYT] AVTIOTOLY VTS OE Tdom 1) pebua oTo xOxdwua. Emmiéov, ol
OVIAOYIXES OPYLTEXTOVIXEC €YOUV TNV BLVATOTNTA ENEEEPYUTIOG TOU CHUNTOS
amevdelag and T €£600U¢ TV Ao INTAEKY, YWl Vo amauToOVToL UETUTEOTELC
avahoy ol oe Pnplaxd oy, oL oTolol XATIAUBAVOUY XUXAWUATIXG YWEO XAl
HATOVOADVOUV PEYHAN TOCH EVERYELNC. AXOAOUIDOVTAC QUTHY TNV TEOGEYYIOT),
auTh| N epyacio TpoTelvel gl evahAoxTixd|, YounAng Loy 00g, TAHEWS AVaUhOYIXN
X0l TORGAANAT) CEYLTEXTOVIXY YLl TNV XUXAWUATIXT VAOTIOINGT) Tou aAyopituou
Support Vector Machine pe duvoatétnta yia on-chip learning.

O aiyopripoc SVM umopet va tponomoinel yio Ty mepinteon ToAamiwmy
XAICEWY, OAAG TNV oucia Tou elvon €vag ahyopLduog duadixhc Tadvounong.
Yuyxexpyéva, o otoyoc tou SVM elbvan va toadvourioet ta dedopéva oe xortn-
yoptec xodopilovtag to BérTioTo unepeninedo, To omolo elvar To dpto amdpacng
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peTa€l Twv 800 xAdoewy. To BértioTo unepeninedo oplleTton we To LTEPETINEDO
Tou €yel To Uéyloto meprinplo(andotact) and to TANoECTEP OE aUTO omuEia
XL TV 0V0 XAIoEWY. LTV TERITTOON 1N YRUUUXE Loy welCU®mY DEDOUEVKY,
o ahybprdpoc SVM yenotponotel to téyvaopo tou nupriva(Kernel trick) yio
TN LOVTEAOTIOINGT UN YRUUUIXOY 0plev anogdoewy. To téyvaouo Tou mupriva
EMTEENEL TN AetTovpYiot OE YMEO TOAGDY BlacTdoEWY. AUTO ETTUYYAVETOL UE
™ yefon Kernels. Ot ouvapthoeic axtvixrc Bdone (RBF) eivon and ta o ou-
YV yenoylorototueva Kernels oe uhomoioeic tou SVM o anotelolyv eniong
uépog auUTAS TN epyaoiog.

O ayobpriuog udinone tou SVM uropel vo tpomonomndel xou vor petortpo-
nel oe pioe mo hardware-friendly exboyy| tou, n onolo unopel va ulhomomndet
pe mhipwe avohoyxd xuxhopoto(EE.2.10). H poper auth xon 1 Swadixaocia
e€UYWYNAS TNG TEPLYPAPETOL OVIAUTIXE GTO EXTEVES Ay YALXO XE(UEVO.

H miewodnplo twv nupdwope vhomotfioewy tou SVM anoteholv dngloxéc
apyrtextovixéc Baolouevee oe FPGA, evdd éyouv undplel npooeyyioelg yen-
CLUOTIOLOVTOG XL AVUAOYIXES YOl UELXTOU OHUATOC EYLTEXTOVIXES. ATd TiC
UTdEY 0UCES TAYPWS AVAAOYWXES LAOTOMGCELS, 1) xdde pla Topouctdlel ouyxe-
XPWEVOUC TEQLOPLOUOUE. e Wlal om0 T VAOTOLACELS Tl BACLXA XUXAWUTIXG
pépn Tne apyttexTovxrc €xouy TpavlioTop To omolo AEITOLEYOUY TNV TEPLOY T
0pV1g TOAWOTNE OTOTE HATAVIADVOUY UEYUAVTERT] LOY D, EVE OE GAAY amontoOV IO
pETOTEOTELC BEBOUEVOLY amd OVAAOYXO GE PNnpioxd GHHOL X0t Tl SLayOOUATA EL-
66000 eivan ovo TAYoug 2 Slc Tdoewy. e plo TelTr LAoToINoT ETITUY Y dveTol
avVohOYIXE LOVO Tagvounot oTo chip aAAd ot Stadxacta Tne udinone cuuue-
TEYEL UTOAOYLOTAC EVG TéAOG o€ plo dhhn o SVM vhoroteiton mAHpng avaloyixd
oA uovo ot eninedo Yewpnuxnhc tpocopoiwone oto Matlab, yweic avahoyn
VLSI oyedilaon oto Cadence.

ApyittexToviXr, XUCTAUATOS

Ye autiv v epyooia mopouctdleTon Yo TAREMS TURAAANAT Xat TANPwWS o-
VOAOYWXT) NUEOWAPE VAOTIOMACT YUUNATS xatavdhwong tou akyopliuou SVM
pe duvatotnTa expdinong ov-cnn. H mpwtotumion autod tou épyou €yxetton
OTO YEYOVOS OTL AMOTEAELTAL OO XAUVOTOUO XUXAWMUATO EEOUPETXE YUUNANS
loyVog w¢ douxd oTotyela Yoo TNV LAomoinon moludidotatwv RBF cuvoe-
THoEWY X OhaL Tor Teavl{oTop TNG AEYITEXTOVIXAC AELTOLEYOUV OTNV TEPLOYT
unoxatw@iiou(subthreshold region). Emmiéov, pa tpononoinuévn éxdoaorn tou
xhaowol xuxhouatoc Winner Take All (WTA) yenowonoteiton yior Beltie-
uévn axpeifelor Tne Sadixactog Tagvounong. H npotewouevn apyttextoviny 5o-
xXdo tTnxe yio pddnon xan tagvounon yenotdonoiwvtag 8 learning samples xou
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dedopéva elc6b0uU PO Tagvounor 13 Lo TdoEwy.

H mpotevduevn apyltextoviny] Tou CUCTAUATOS ATOTEAELTOL amtd BLO Bacixd
dopwd ototyela, TN povada exudinone xat Tn wovdda Tagvouncng. Xe eminedo
CUC TAUATOS, TO UTThOX EXUAINONE €YEL OYEDIAOTEL ue 0TOYO TNV LAoTOlNCY TOU
hardware-friendly xavova exudinone tou SVM xou aneixovieton oto Xy.2.2.
Emopéveg, umdpyet avdyxn yia xuxhopata mou vAoroovv RBE Kernels, xu-
XAOUITO IOV EVOWUAT®mVoLY Ta labels, xuxhduota mou va mohhanioctdlouvy
UE TNV Ty TOu ai xot XUXAGUATO ToL Vo TEAYHATOTOOVY TG AmapalTnTES €-
navahiderg. Ou tipée twv ntodoamhaclaotoy Lagrange xou twv RBF Kernels
avTioTolyoly oe peluata tpaviictop, eve T labels yi = + -1 avtictolyolv
oTIC VeTiXéC xou apVNTIXES TAOELC TPOYODOOCIAS AvTIoTOLYA.

To umhox expdinorne anotehelton omé éva array M2 RBF, 6mou 10 M ebva
0 apLiUOC TWV BELYHATOY TTOL EUTAEXOVTOL OTT) Sloditxacto expdinone. To xeid
RBF lowdvouv tic eioddoug (Belyuarta exudinong) tou cuothuatos. Kdbde
xeM RBF eqopudler pio molvyetafBinty ouvdptnon RBF N Swotdoewy ye
evdwlopevo Vdoc, WoTe Vo xavorolel TNV avdyxn Tohhaniactacuol e ai. Ta
labels tepthopfdvovtan péow e yerone M (M —1) Swxontédyv . H éZodog xdie
X j xehol RBF yio i neqj ond tov nivaxa Xas cdotir TV xuttdpny RBFE €yel
To avtioTolyo label mou emiouvdnTeTon amd Toug draxdmrtee. To peduota e€6dou
TV OlxonTOY olugwva pe To avtiotorya labels adpotlovton xan cuvdEovtan pe
To adjuster xuxhouaTo.

Trdpyouv M adjuster xuxAmuota ToU 0LCLAC TIXA EQPAUEUOLOUV TIC UT) YR~
uég Aettoupyieg ehaytotonoinong xou peylotonoinong tou hardware-friendly
xavova expdinong tou SVM. Kdde adjuster xOximuo Aopfdver €netto amod
dpolom Tar peloTol €£OB0U TWV BLUXOTTOV ULG GEWRS TOU Tvoxat X s cdoth
Twv xuttdpwv RBF xau mapdyet peduatoa 660U ta omola 0T cUVEYELN TROPO-
dotouvtaw oe plot ot Tou mivaxo twv RBE xuttdewy. ‘Etot, Swpoppdveta
évag Bpdyog avddpaong xon To xOXAWUN EXUSINCNE oLUYXAIVEL TAYjPWS ToEdA-
Anha xou aodyyeova, ywelc T yerion e€wtepxol pohoylol. H dadixacto pudin-
ong ohoxAne®VeTAL TEOGOLOEILOVTIC TIC OWOTES TWES Yo To pedpata €€660U
Twv adjusters mou avVTITPOCWTEVOLY TIC TOEUUETEOVS Uddnong Tou alyopiuou
SVM.

To ymhox tagvounong €yet OYEBIACTEL UE OXOTO TNV EQURUOYT] TOU XAVOVAL
amogaone tou SVM oe hardware xou anewoviCetar oto Ny.2.3. To testing de-
douéva, (draviopata N BlacTdoewy) TeoQod0TOUVTOL GTO UThOX TAEVOUNOTC
oUupwva Ue éva e Tepd poldt. Katd tn Sidpxeia xdde xOxhou poloylol, xo-
Vévo and to M xehd RBF unohoy(let tnv | ouvdptnone RBF petad tou
dtavOopatog testing Tou cuyxexplpévou xUxhou xou Tou delyuotog exudinong
Tou avTioTotyel 0To cuYXeXEWEVo xeAl. Ta xehd RBF nohwmvovtan pe avtiypo-
(POl TWV PEVUATWY ££600L Twv adjusters mou xodopilovtar xatd TN Bidpxelo TNS
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(PACNC EXUAUINONG TOU GUC THUATOG.

XN ouvéyew, mpEnel va xadoploTel To mpdonuo tou avpolouatog oty
Exgppact Tou xavova andgoaone Tou SVM. Autéd Yo ymopoloe va emteuydet
ouyxplvovtog Tic VeTixéc Tiwég autol Tou adpoloyatog Ye TIC apyNTIXéS. LNy
QPYLTEXTOVIXY| TNG LAOTOIMONG Hog, aUTESG oL VETIXEG TYES Elvon ToL pEVHATOL €-
£6dou twv xuttdewy RBE nou éyouv Selypota expdinong ewoddou ye detind
label, evéy ou apvnTinég Tpée ebvan tar pedpota e€66ou Twv xuTTdpwyv RBF nou
€youv Belypoata expdinong ewwodou ye apvntixd label. Xenowwomowdvtog dio-
x0mTEg, OAec oL Vetinég Twég adpollovtan poli, OTwe OAeg oL opYNTXES. 2Tn
ouvéyela, éva xOxhwpo tou ovopdletor Winner-Take-All (WTA) yenowomnote-
fron yior T oUYXEIOT TWY AEVITIXOY X TWV VETIXOV TGV UE ATOTEAEOUA TNV
TagLVOUNOT| TOU &y VWo Tou Slavbouatog elcddou. Xenoulonoteitar éva xOxhwud
WTA avti evog ouyxeith) Aoyw Tou YeYovoTtog OTL 1 enelepyacion Tng TANeOPo-
elag oto choTNUA TpaypaToToLEiToL xURlwE O PECW PEVUATOS, OTWS cuBaiveL
xou ot WTA xuxdoduato.

H mifeng avdAuor twv ovokoyiX)Y XUXAGUATOY VLol TIC TOAUBLIC TUTES
RBF cuvaptfoelg, Twv Blaxonto)v Tou evowpatovouy to labels, twv adjusters
xat 1wV WTA xUxheUdTtov TeoyUoToToLE(Tol 6T0 EXTEVES Ay YA XEUEVO To-
EOXATE.

Apyrtextovixeg KuxAwpdtwy

To Baowd dopxd cTolyela TNG aEYLTEXTOVIXNS TOU TEOTEWVOUEVOU GUC THUNTOS
elvon ovohoyind xuxhdopata Tou aroteholvton and teaviiotop MOS nou Aet-
TOUPYOLY GTNY TERLOY Y| LToxaTw@Alov. Auth 1 emhoyy| oyediaouol Bacileton
og 0U0 xVpLaL YopaxXTNEIC TG NS Acttoupyloag Tng meptoy ¢ subthreshold mou
TNV XoMo T ot EAXVCTIXY TEY VXY YL TO OYEDIAOUS AVOAOYIXDY OPYLTEXTOVL-
%GV Y eneepyaoia tAnpogopioc. Ilpwtov, 6Tny Teployh *dtw ToL xaTEEAioU
T0 pedya Tou tpavliotop oyetileton exdetind ye v Ttdom uetald mOANG xou
Tyhc. Auto emTEENEL TNV LAOTOMGN YEHOWOY UAINUATIXGDY EXPEUCEWY OE
XUXAOUOTA OTOL To Eedua ex@edlel TNy emduuntyh TAneogopla. Emmiéov, n
eot| pebuatog ota TeavlioTop mou Aettoupyolv oty subthreshold eivon moAd
YOUNAOTERN amd TN poY| EEVUATOC GE TEPLOY Y| LOYUPNEC avaoTeoghc. Autd emi-
TEETEL TN OWO T AELTOURYIN TWV OYEBLACUEVLY XUXAWUNTLY UE YUUNAO PEDUA
Ayov nA ¥ oxoun xou pA, e anotéheoua eEUPETIXA YoUUNAY XUTAVIAWDGT L-
oyvoc. OANOXANEO TO TEOTEWOUEVO GUGTNUA AELTOURYEL UE TOAD YaUNnAr Tdom
Tpogodoaioc 0.6V.

Hapovoidlovtar xar avolDoVToL AETTOUERNOS 4 VEEC XUXAWUATIXES APY(LTE-
XTOVIXEC yia TNV vhomoinor noluvdidotatwv RBE cuvoptioewy. Ta mpotel-
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VOUEVOL XUXAGUATA €YOUV aveEdpTnTo ot NAEXTEOVIXO €heyyo oto Vjog, TN
HEom T xou TNV Lo Topd Tou pelpATOg €€600L To omoio elvon Wid TOAUBLAGC To-
™ I'aovoiav cuvdptnon Twv TAcE®Y ELIGO00U TV XUXAWUATWY auTdY. Ko
ol 4 mpotewodueveg Tonoloyieg yenotponotoly éheyyo tou bulk twv tpaviictop
OoTe Vo emTOyouy TNy emduunt eAey&uotntor oto evpog e I'voouotlovic
xounOANG €€660v. Ta xuxhOUoT AUTE €YOUV T YoUNAY TdoT Teopodoaiog
oe oyéon Ye v Pihoypapio, 600 xou AEXETA MO YOUNAY XoTavaAwaoT). Xo-
paxTneEloTiXd avagépeton 6TL N 1n and Tic mpotewvdueves Tomoloyiec(Xy.3.3)
EMTUYYAVEL WO TYH Aettoupyia ue xatavdhwon evépyetag 3,9nW yio tnv vAo-
molnomn Wwag povoddotatng I'xaoucoiavrc, ue v pelworn oty xatavdhworn
loyVog o€ oyéon e v younhoteen T e BiBhoypoagpiog (13,5nW va etvon
etvon xatd 71,1% . ToipddAnhat, 0L XUXAWUOTIXES OUTES OPYLITEXTOVIXES UMAULTOVY
o apriud tpavlioTop yia TNV LAomoinon I'vaovciavevy piog Sudctaong xau
€YOUV TNV IXAVOTNTO EMEXTACTS TNG ARYLTEXTOVIXAC Yol TNV LAOTOMGT TOAUGL-
dotatwyv RBF cuvapthcewy.

Me oxond v Pektiwon g YeouuuxoTnTaG 0Tov €AeYy0 Tou Uoug Twv
nohuddotatwy RBE cuvaptoewy, otny é€odo xdle cascaded Gaussian Fu-
nction circuit cuvdéeton évog avahoyinde translinear tolamhactaotic(Xy.3.62)
0 0omol0g EMTUYYAVEL TNV YRUUUXOTNTA QUTY. LT CUVEYELD, DLAXOTTIXG XU-
xhopoata toe onola vhomooly XOR mhdeg ue Ayotepa tpavlictop and 6TL o
napadootoxy) CMOS static hoyiny), evowpatwvouv atny €€odo twv RBF cells
Vv TAnpogopia tou eumeptéyeton ota labels(Xy.3.64). Xtn cuvéyeta oyedidlo-
vtor ot adjusters(Xy.3.65) ot onofot eivar xuxhopata Pactopévo oe xodpelteg
EEVUATOC XAl UVAOTIOOOV TIC UT] YPUUUIXES AELTOURYElEC TOU UYEYIOTOU XL Tou
ehayloTou mou eunepiéyovton oty Exppaot expdinone tTou X'M. Ot adjusters
hBEvouy »¢ EIGOBOUE Tal PEUUATO TTIOU €0YOVTOL OO TOUSG OLUXOTTES EVE T
eevpata €€6dou twv adjusters moldyvouv T RBE cells. 'Etou onuiovpyeiton
0 BpoYy0g avABEAoNC TOU ETUTEENEL OTNV XUXAWUATIX AEYITEXTOVIXT| VO CU-
YUMVEL OTIC OWOTEG THES TV PELATWY e€600L Twv adjusters Tou avomapioTo-
Uv Toug Tolhamiactaotég Lagrange tng Sladuasctac udinong tou aiyopituou.

Tt Ty T€vounom v &yveotenv Sedouévmy leodou xaL TNV LAomoinon
Tou xavova andgaong tou SVM yenowonootvtoar xuxiouoata Winner-Take-
All (WTA) (Xy.3.69) ta omola 8éyovton w¢ el06d0ug pebuata xou otny €060
TOUG U1 UNdevixo etvan To WOVo pedua eXEVO TOL AVTIGTOLYEL 0TO PEVUA ELGOBOU
ue TV peyohlTteen Ty OuolaoTind, Tar xUXAOUATE AT EXTEAODY GOYXELON
HETAE) TOV PEVUATKY ELCOBOU TOUG XU ETLTUYYAvVETAL ETOL 1) TaglvounaT. LTny
TEOTEWOUEVT] apytTEXTOVIXY ovTl yior Evar oamho WTA xOxhwya, yenowonoteito
évol TELTAG 0TN oelpd, pe anmoTtéheoua vo audveton 1 axpifelo oty clyxplon
TWV PEVUATWY XL GUVETWE GTNY TAEVOUNOT).
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Egoppoy? tou YuotAuatog xow ATOTEAECUATA

H opd7) Aertoupylo xou anoTEAEOUATIXOTNTA TNG TROTEWOUEVNS ORYITEXTOVIXHC
TOU GLUGTHUATOC Yo Yainom xou tadvounorn SVM doxwudleton xa emahndedeton
YENOWOTOLOVTIS €Val TEayUaTixd cOvoho dedouévnv. Ilpoxewévou va yenot-
ponoindolv autd Tor dedouéva Yo udinon xou tagvouncn SVM, emiéyovton 2
amo TIC GUVORLXES HAJGELS TOU GUVOAOUL BEBOUEVWY Yia xdie doxur). Metd tny
eneepyooioa Twv 6edopévwy and Python, eldyovton 13 yopaxtneiotxd. I'a
NV TepinTwon TaEwounone YEToEl NG TEKOTNG Xt TN 0eUTEENE XAdoNng Tou
cuVOLoL dedopévwy, To hardware npotewvouevo clotnua tétuye validation a-
ccuracy 83 %, eve to validation accuracy tne Python ¥tav 84 %. Tty
TepinTwon Tavounong YETaLY TS TEMTNG Xot TNS TEITNES XAAOTE TOU GLYVOAOU
OEDOUEVLY, 1) apyLTEXTOVIXY) TNE LAoToinomg wag tétuye validation accuracy 94
%, evé to validation accuracy tne Python #tov 93 %. Ta ogdhparta petalld
Aoytopxo xat Tne Teotewvouevne hardware uhonoinone eivon oyedov ageintéa,
YEYOVOS TOU AmOBEXVUEL TN WO TY| AELTOURY IO X0 TNV ATOTEAEGUATIXOTNTA TNG
TEOVGLALOUEVNC XUXAWUITIXNG AEYLTEXTOVIXTC.

Eniloyvog xow MeAhovtixr, Enéxtaon

Ye authv TNV gpyacid, TOQOUCIHCTNXE Wal TANIEMC AVOhOYIXT, ECAOETING YO
UNATE oy 0o xou wolixd TaEdhANAn avohoYiXY) XUXAWUOTIXY AEYITEXTOVIXT] Yidl
v vhonoinon tou SVM ue duvatodtnta pdinong on-chip. H apyitextovinn
Tou GLoTAUATOG avahbinxe xou To Baowd douxd oToyelor Tng culnTRvnXay
Aentouepndg o€ eninedo tpavlictop. Ilapoucidotnxay T€ooeplc BLapopeTixég
OPYLTEXTOVIXEC XUXAWUATWY Yot TNV avohoyxr) bAoToinoT twv tupfivwy PB®,
xad¢ xon ToAamhaclaotéc, daxontes, adjusterts xou xuxAoduota WTA. H
TPOTEWVOUEVT] AEYITEXTOVIXT| EXTEAEL uddinom xou TaEVOUNOT UE EVIEADS AVAAO-
Y16 TEOTO %o TEQLAAUPBAVEL BOUXE XUXAWUATIXG GToLyElot TOMD YoUNAHC XaTo-
vahwone oyog. Amodidel anoteAeopaTixd o€ TEOBAuATo SUABXTC TOEVOUT-
oNng, xdwg BOXWACTNAE UE EVOL TEAYUATIXG GOVORO DEBOUEVMY XAl THEOUGTaGE
o@dhuarta byt neplocbtepo and 1 % o olyxplon Ue g Topadootoxt) UAOTOLN-
orn tou SVM ue Aoylouxd. Melovtnég epyaoieg mou oyetiovton ue autrhyv
NV apyttextovix] Yo umopovoay va tepthopfdvouy layout xou xoataoxeur ch-
ip xou UETPNOEC TOU TPOTEWOUEVOL XxLUXAWUATOS. Emmiéov, Yo umopoloay va
GYEBLATTOVY AVAAOYLXA XOU YAUUNATG Lo} VOC XUXAWDUOTA UVHAUNG CUVOEOUEVA UE
TNV TEOTEVOUEVY] AEYLTEXTOVIXT], UE OXOTO TNV ATOVHAXEUCT) TV TOQUUETOWY.
Auth n apyrtextovixr Yo unopoloe eniong vo xApoxwiel Tpoxewévou va e&u-
mneeTel Slaviopata eloddov LPNAGTERTE BldoTaong and 13 xou Ye TEpLoCOTERY
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otad€oipa detypota uddnong and 8, 6w cuveBauve o autéd T0 €pyo. Extog o-
76 TNV eqappoy”) SVM, ta Baoixd dopxd o totyeio auThAS TNS apytTeEXToVIXC Var
umopoloay va BertioTonoinoly tepuitépw xou Vo yenoylomointoly oe dhheg
epapupoyég hardware acceleration ahyopliuwy unyavixnic uddnong.



Kegpdiaio 1

Introduction

1.1 Machine Learning in general

The design of machines that could develop their own intelligence has been
one of the biggest dreams of humankind and one of the greatest scientific
and technological challenges of the last century. Machine learning is de-
fined as the study of algorithms and statistical models that are used to
successfully perform tasks without having been explicitly programmed to
do so[I], 2]. The machine learning approach enables computer programs to
generate new knowledge without a specific instruction set but by using a set
of sample data and extracting useful patterns from it. This knowledge gene-
ralization is performed without human intervention and results in effective
prediction or classification of new information by the machine learning sy-
stem. Machine learning(ML) is used as a fundamental tool in an abundance
of applications in the modern world, ranging from biomedical applications|[3]
to speech recognition[4], autonomous driving[5] and stock market trading[6].

1.2 Benefits of hardware Machine Learning arch-
itectures

Machine learning algorithms are traditionally implemented entirely in softw-
are. However, the amount of data required by machine learning applications
has been steadily increasing in recent years. As machine learning tasks invo-
lve a massive amount of computations, ML algorithms become increasingly
demanding in memory and computational resources [7, [§]. In traditional
CPU architectures, goals regarding power consumption and speed of ope-
ration are greatly compromised by the need for constant data transfer be-
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tween memory and processor. As classic computer architectures struggle
to keep up efficiently with the ever increasing demands of modern machine
learning applications there is a trend towards developing specialised har-
dware architectures for implementations of ML algorithms that meet those
constraints[9].

Such hardware accelerators could also meet the requirements of Internet
of Things (IOT) applications, in which high speed and low power embedded
data collection, processing and storage (away from data centers) is of pa-
ramount importance. On-chip information processing without the need to
transfer data greatly boosts the development of low latency and long battery
life smart sensor systems[10} 1] .

1.3 Hardware Machine Learning architectures

Digital architectures based on Field-Programmable Gate Arrays (FPGAs)
are becoming increasingly popular when it comes to hardware acceleration
of Deep Learning networks[12].

Apart from digital architectures, alternative approaches are being re-
searched involving the use of analog and mixed-signal integrated circuits
(IC). Analog IC architectures have the advantage of low power consum-
ption, low area and massively parallel computation.Accurate emulation of
mathematical functions is achieved thanks to the physical properties of
transistors[13, 14} [15].

Extensive research has been conducted in the past regarding analog h-
ardware implementation of Artificial Neural Networks[16l [17, (18] 19]. Tra-
ditional analog VLSI building blocks have been used to implement neurons
and synapses while learning algorithms like back propagation[20, 21| 22]
and weight perturbation [23| 24, 25 26] have been realized in hardware.
However, such architectures generally could not achieve similar efficiency as
software approaches.

An emerging approach which demonstrates promising results in har-
dware Neural Networks Implementations are neuromorphic systems[27, 28].
They are composed of analog spike based circuits that implement neurons
and synapses imitating the function of the human brain along with digi-
tal Address Event Representation (AER) communication protocols[29] [30}
31, 32]. Neuromorphic architectures implement Spike-Timing-Dependent-
Plasticity Rules (STDP) and realize Spiking Neural Networks(SNNs) in
hardware[33]. Neuromorphic systems often incorporate arrays of memri-
stors, non-linear and non-volatile analog programmable memories that can
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store the network’s weights[34. [35], 36, [37]. Large scale neuromorphic chips
have already been fabricated and tested[38], [39] 40].

Apart from architectures implementing general purpose neural networks’
structures, dedicated hardware architectures have also been proposed for
executing specific tasks. Mixed-mode processors have been implemented
for object recognition[41], [42] as well as analog architectures for K-means
clustering[43], 44], Radial Basis Function(RBF) neural networks[45], RBF
classifiers[46], Support Vector Machine algorithm[47, [48], 49, 50. [51], Support
Vector Domain Description algorithm[52] and Support Vector Regression for
approximate computing[53].

Following this approach, this work proposes an alternative low power,
fully analog and parallel architecture for hardware implementation of Sup-
port Vector Machine algorithm with on-chip learning capability.
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SVM hardware system
architecture

2.1 Support Vector Machine Theory

Support Vector Machines are algorithms that belong in the category of Su-
pervised Machine Learning, one of the core branches of Machine Learning
and Artificial Intelligence theory. Supervised machine learning systems are
used either for regression or classification problems. Supervised ML uses
a training dataset, which is data with known labels, to perform the lear-
ning procedure by minimizing a loss function with algorithms like gradient
descent. In the case of classification, after the learning procedure has been
completed and the system’s parameters have been updated accordingly, new
data with unknown labels serves as the input of the system that attempts
to categorize it.[1} 2]

SVM algorithm can be modified to accommodate multiple classes but in
its essence it is a binary classification algorithm. In particular, the goal of
SVM is to categorize data into classes by determining the optimal hyper-
plane, which is the decision boundary between the two classes. The optimal
hyperplane is defined as the hyperplane that has the maximum margin from
the closest points of both classes(Fig.2.1). If w,, b, are the optimal values of
the weight vector and the bias vector respectively, Xi is the N-dimensional
training sample with label yi equal to 1 or -1 , the optimal hyperplane as a
mutlidimensional linear decision boundary is defined as:

wl'X +b,=0 (2.1)

The goal is to determine the values w, and b, for the optimal hyperplane,
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given a specific learning set Xi,yi. This pair of values should satisfy the
following expression:

yi(w! Xi 4+ b,) > 1for i-1,2,..N (2.2)

SyAuo 2.1: SVM’s optimal hyperplane

Apart from satisfying the above expression, the optimal values of w and
b should be such that maximize the margin of separation between the two
classes. Maximizing this margin is equivalent to minimizing the norm || X ||
Thus, the following cost function should be minimized:

Fw)=2"Y (2.3)

The minimization of this cost function with the specified linear constraints
is a convex optimization problem and is solved by a transformation to its
dual problem and the use of Lagrange multipliers.

In the case of non-linearly separable data, the SVM algorithm makes
use of the kernel trick to model non-linear decision boundaries. The kernel
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trick allows operation in high dimensional feature space. This is achieved by
using kernel functions. Radial Basis Functions(RBF) are among the most
commonly used Kernels in SVM implementations and they are also part of
this work. The RBF Kernel on two vector samples X and X’ and parameter
o is defined as:

_lx-x"2

K(X,X')=¢ 27 (2.4)

For the case of non-linearly separable dataset the dual optimization pro-
blem is defined as: Given a training dataset (xi,yi) for i=1,2...N the Lagrange
multiplier values ai for i=1,2...N should be determined so as to maximize
the following function:

al Yy S aiagyiy K (@i, w5)
Qa)=> a;i—

. (2.5)

i=1

under the following constraints:

N
D ayi =0 (2.6)
i=1

and

0<a; <C (2.7)

for i=1,2....N, where C is a regularization parameter

This is SVM’s learning rule. With the values of the Lagrange multipliers
that correspond to the optimal hyperplane having been determined by the
learning rule, the classification rule of SVM is the following:

N
f(z) = Sign[z a;yi K (z, z;) + b] (2.8)
=1

for input test vector x and a training set xi,yi for i=1,2...N

2.1.1 Hardware-Friendly SVM Algorithm

The values of the Lagrange Multipliers are derived by solving the constrained
quadratic programming problem defined by equations (2.5), (2.6) and (2.7).
This SVM learning rule can be modified to be more compatible with analog
hardware architectures[48] 49].To achieve this, we choose a type of gradient-
descent algorithm to update the values of ai in the following way:
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oW (a,b
a; < a; — 8(%)711 (2.9)
where ni is the learning rate.For choosing n; = —=——— and for K being a

K(xi,x;)
self normalized kernel like the Gaussian Kernel (K (z;, x;) = 1) the hardware-
friendly SVM update rule is defined as follows:

a; < min(C,max(0,1 — y; Z# Ymam K (i, 2m))) (2.10)

In this update rule the bias value b is set to 0. The characteristics of
the Gaussian Kernel, which maps the input vectors to a space of infinite
dimensions, makes the omission of a single bias value b possible as its effect
on the total result can be considered negligible.

The derived SVM update rule of the last equation is more suitable for
hardware implementation, thanks to specific properties it demonstrates. Fir-
stly, there is no need for extra memory to store previous ai values as they
do not appear in the right hand side of the update rule. Furthermore, the
form of the update rule resembles the one of the classification rule Eq.(2.8),
meaning that the same hardware blocks could be used for both tasks. This
would simplify the system architecture and make it more compact and area
efficient.

2.2 Related Work in Hardware SVM implementa-
tion

SVM hardware implementations usually involve digital FPGA based archite-
ctures [54, 55 [56), 57, [58]. There have also been several mixed signal[50] and
analog[b1l [47) 48] 49] architectures for hardware implementation of SVM.

The mixed-signal architecture in [50] incorporates analog circuits for co-
mputations along with a digital interface including delta-sigma Analog to
Digital converters and DRAM storage,performing both learning and classi-
fication on chip.

In [5I] an array of analog translinear circuits with floating gate transi-
stors operating in the subthreshold region is used. Low power computation
provided by translinear and subthreshold techniques is combined with analog
non volatile memory storage due to the existence of floating gate transistors.
The specific implementation achieves very low power consumption in a very
large scale experimental setup, performing multiclass SVM for 24 classes,
with input vectors of 14 dimensions and as many as 720 support vectors.
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However, the learning is not performed on-chip and in an entirely analog
way. The learning procedure is called PC-in-loop, as a computer is conne-
cted to the system that performs the update of learning parameters of SVM
in software. Then, these parameters are downloaded to the analog floating
gate array.

On the contrary, the circuit architectures in [47, 48] [49] perform on chip
learning of SVM along with classification.

In [47] a fully analog implementation of SVM is presented, using floating
gate transistors operating in the subthreshold region. To implement the le-
arning procedure, projection neural networks adapted for SVM are proposed
and the constrained quadratic problem is solved by a set of ordinary differe-
ntial equations. This fully analog approach however has only been realized
with Matlab and Spice simulations, without actual analog vlsi design taking
place. Analog circuit design and tapeout of such an architecture would be
complicated due to the presence of floating gate transistors.

In[48] a row parallel architecture is presented, with transistors operating
in the subthreshold region. It utilizes the hardware-friendly version of SVM
algorithm of ().The proposed implementation is area efficient and achieves
low power consumption. However, the proof of concept chip fabricated in
the specific work classifies input vectors of only 2 dimensions. Furthermore,
Analog to Digital converters and a digital block in a feedback loop configu-
ration realizing a binary search algorithm are necessary to implement the
training mode of SVM.

In [49] a fully analog and parallel architecture is presented. The basic
circuit components of this architecture are such that enable an area efficient
implementation of analog Kernels as well as a more robust design compared
to other works, suitable for the implementation of high dimensional Kernels
(accommodating inputs of 64 dimensions). This architecture also makes use
of the hardware-friendly version of SVM algorithm but in contrast to [4§]
realizes it with fully analog circuitry. The analog circuits are self-converging,
determining the proper Lagrange multiplier values for SVM learning without
the presence of an external digital clock. For the realization of multivariate
RBF Kernels, this architecture uses circuits with transistors operating in
saturation region. On the one hand this design choice increases the speed
of operation and the robustness of the architecture against process varia-
tions. On the other hand it leads to higher power consumption compared
to implementations using transistors operating in the subthreshold region.
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2.3 Proposed System Level Architecture of Har-
dware SVM implementation

In this work a fully parallel and fully analog ultra low power hardware imple-
mentation of SVM algorithm with on-chip learning capability is presented.
The system architecture and the learning circuitry are inspired by [49] as the
same hardware-friendly version of SVM is realized exclusively with analog
circuits.

The proposed system architecture consists of two main building blocks,
the learning and the classification block. In a system level perspective,
the learning block is designed with the goal of realizing the update rule
of the hardware-friendly SVM and is depicted in Fig.2.2 Thus, there is a
need for circuits implementing Kernels, incorporating labels, multiplying
by the value of ai and performing the necessary iterations. The lagrange
multipliers’ and kernel function’s values are realized with transistor currents
while the labels yi= +-1 correspond to the positive and negative supply
voltages respectively.

The learning block consists of an array of M? RBF cells, where M is the
number of samples involved in the learning procedure. The RBF cells receive
the inputs(learning samples) of the system. Each RBF cell implements a
multivariate RBF Kernel of N dimensions with tunable height so as to
satisfy the need for multiplication by ai.Labels are included through the
use of M (M — 1) switches. The output of every X;; RBF cell for i # j
from the matrix Xjs.ps of RBF cells has its corresponding label attached
to it by the switches. The output currents of the switches according to the
corresponding labels are summed and connected to the adjuster circuits.

There are M adjuster circuits which essentially implement the non li-
near minimum and maximum operations of the hardware-friendly update
rule. Each adjuster circuit receives the summed output currents of the sw-
itches of one row of the matrix X753 of RBF cells and produces output
currents which are then fed back to one column of the maxtrix of RBF cells.
Thus, a feedback loop configuration is formed and the learning circuitry
self-converges without the use of an external clock. The learning process
is completed in a fully parallel and autonomous fashion, determining the
right values for the adjusters’ output currents which represent the learning
parameters of SVM algorithm.

The classifiaction block is designed with the aim of implementing the
SVM decision rule(Eq.2.8) in hardware and is depicted in Fig.2.3 It consists
of M RBF cells, M switches and a Winner Take All circuit for comparison.
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Yyfua 2.2: Learning Block.

Test samples(vectors of N dimensions) are synchronously (based on an ex-
ternal clock) fed to the classification block. During every clock cycle, each
of the M RBF cells computes the RBF Kernel Function of the test vector of
the specific cycle and the learning sample corresponding to the specific cell.
The RBF cells are biased with copies of the adjusters’ output currents that
are determined during the learning phase of the system.

Next, the sign of the sum in the expression of SVM’s decision rule has be
to determined. This could be achieved by comparing the positive values of
this sum to the negative ones. In our hardware implementation, these posi-
tive values are the output currents of the RBF cells that have input learning
samples with positive label while the negative values are the output currents
of the RBF cells that have input learning samples with negative label. By
using switches, all the positive values are summed together, same as all the
negative ones. Then, a current-mode circuit called Winner-Take-All(WTA)
circuit is used for comparing the negative to the positive values and classif-
ying the test vector. A WTA circuit is used instead of a comparator due to
the fact that information processing in the system is performed mainly in
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current-mode.
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Yynua 2.3: Classification Block.

The novelty of this work lies in the fact that it consists of novel ultra low
power circuits as building blocks for implementing multivariate Kernels and
all transistors of the architecture operate in the subthreshold region. Fur-
thermore, a modified version of the classic Winner Take All (WTA) circuit
is used for enhanced accuracy of the classification procedure. The propo-
sed architecture was tested for learning and classification using 8 learning
samples and classification instances of 13 dimensions.

The transistor level analog implementation of the RBF cells, the switch
cells, the adjuster circuits and the Winner Take All circuit will be discussed
in detail below.
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Proposed Circuit
architectures

3.1 MOS Transistors in Subthreshold Region O-
peration

In Fig.3.1 the structure of an NMOS transistor is depicted. The body or
substrate of a NMOS is p-type so in the majority carriers are holes. In
the n-type regions of the source and the drain, which are symmetrical in
a mosfet structure, the majority carriers are electrons. The channel is the
area between the source and the drain, underneath the gate and has length
L and width W. The gate terminal of the transistor is made of polysilicon
and is insulated from the channel by using silicon dioxide. The voltages
at the gate (Vz), the source (Vs) and the drain (Vp) of the transistor are
referenced to the substrate voltage. V; is the threshold voltage, a value
above which a conducting channel is formed and the transistor operates in
linear and strong inversion region.For Vgg < V; the transistor operates in
the so-called subthreshold or weak inversion region.

Gate

Source Drain
T Qxide | T
[ | .| 1 1

Al

e
A L n J
——>
L ]

Body

Syfua 3.1: NMOS structure
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It is often assumed that for Vgg values lower than the threshold voltage
the transistor’s current between drain and source is zero. However, in the
subthreshold region the mosfet’s current is an exponential function of its
gate to source voltage. In this region of operation, the electric charge of
the inversion region is much smaller than the charge of the depletion region,
due to the fact that the gate to source voltage applied is not sufficiently
large to form a conducting channel. The subthreshold current is essentially
diffusion current caused by th concentration of minority carriers. By using
the sub-threshold region MOS model in [59], the currents for for the PMOS
and NMOS respectively are the following:

I, = 1. »(Vw=Ve)/Vr (e(Vs—Vw)/VT _ e(VD—Vw)/VT> (3 1)
mMos Op .

Inmos

— I, ern(Vo—Va)/Vr (e(vu,—vs)/vT _ e(vu,—vD)/vT) (3.2)

where: k, and k, are the slope factors for PMOS and NMOS transistors
respectively, Vg, Vs, Vp and V,, are the gate voltage, source voltage, drain
voltage and bulk voltage respectively, Vr is the thermal voltage and I,, and
I,, are the characteristic currents (pre-exponential currents) for PMOS and
NMOS transistors, respectively.

The subthreshold slope factor « is defined as:

CO:B

=Gt Ca (3:3)

K

where C,, is the capacitance of the gate oxide per unit area and Cy the
incremental capacitance of the depletion region per unit area. When Vi,
increases The width of the depletion layer increases as well and this leads
t a slight decrease of Cy and a slight increase of k. The values of x vary
between 0.5 and 0.9 depending on the fabrication process and as k is very
slightly affected by a change in the gate voltage, it can be considered a
constant value when performing an approximate analysis of the circuit in
subthreshold.

The basic building blocks of the proposed system’s architecture are a-
nalog circuits composed of MOS transistors operating in the subthreshold
region. This design choice is motivated by two main characteristics of subth-
reshold region operation that makes it an attractive technique for designing
analog information processing hardware architectures. Firstly, in subthre-
shold region the transistor’s current is exponentially related to its gate to
source voltage. This enables the implementation of useful mathematical
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operations in current-mode circuits. Furthermore, the current flow in tran-
sistors operating in subthreshold is much lower than current flow in strong
inversion region. This allows proper operation of the designed circuits w-
ith current down to several nA or even pA, resulting in ultra low power
consumption.

3.2 Proposed Gaussian Function Circuit Archite-
ctures

3.2.1 Gaussian Function Circuit Related Work

RBF kernels are suitable for analog hardware implementation. This is ach-
ieved via specific analog circuits which operate in sub-threshold. They are
known in the literature as Gaussian function circuits or Bump circuits. The
original Bump circuit was proposed by Delbruck [60] and it is a compact
structure with only 8 transistors. It consists of two subcircuits, a differential
pair and a current correlator. The current correlator provides a measure of
similarity between the two currents of the differential pair and its output
is a Gaussian function with respect to the input voltages of the differential
pair [60].

The design of Gaussian function circuits generally aims to independent
tunability of the Gaussian curve’s three characteristics, which are height,
center (mean value) and width [60} [6I]. In addition, such circuits should
be ultra-low power and low-area due to the fact that in system level imple-
mentations of multivariate kernels or RBF NN with many neurons in each
hidden layer, many Bump cells have to operate in parallel fashion.

Delbruck’s Bump circuit [60], shown in Fig. achieves tunability
in height and center, while width is determined by the effective W/L ratio
of the transistors, which also affects the height. There have been several
implementations of Gaussian function circuits, with transistors operating in
sub-threshold, many of them inspired by Delbruck’s Bump circuit archite-
cture. There are realizations in which the Gaussian curve’s width is not
electronically tunable. Instead, the width is tuned by setting a ratio of tran-
sistor W/L which necessitates the use of different Bump cells to generate
different widths of the Bump [62] [59]. An example of such an architecture
with ultra-low power consumption (only 13.5nW ) is analyzed in [62].

The most compact Gaussian function circuit consisting of only four tran-
sistors, but without width tunability is presented in [63]. Moreover, there
are compact Bump circuits using back-gate control voltage to achieve width
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tunability [64] [65]. In contrast, there is a variety of complicated architectu-
res for the realization of fully-tunable Gaussian functions. Examples of such
cirucits are synthesized using the translinear principle and the exponential
characteristics of subthreshold MOS, with increased number of transistors
[66, 167, [68]. Also, an architecture based on the translinear principle and
BJT transistors is presented in [69].

Other complicated architectures use extra stages to achieve tunability
of the Gaussian curve’s characteristics. These extra stages may be imple-
mented with pseudo-differential transconductors [61], operational transcon-
ductance amplifiers [70], Digital to Analog Converters (DAC) [48], different
values of series-connected resistances [71] or prescaling circuits with floating
gate transistors [46] [72]. E.g. a complicated Gaussian function archite-
cture is presented in [73], consisting of DAC, operational amplifier, floating
resistor, multiplier and expontiator. Also, binary switches are incoporated
in the Bump circuit of [74], which exhibits compensation on temperature
and Vpp variations and has peak output currents exceeding 1uA. It is a
modification of the architecture presented in [75].

Apart from the previous implementations in which transistors opera-
te in sub-threshold, there are architectures in which transistors operate in
strong inversion. There is a trade-off between low power consumption in
sub-threshold and higher speed operation in strong inversion. Two Gaus-
sian generation circuits consisting of transistors operating in both regions
are presented in [72, [49]. An implementation which consists of a symmetric
current correlator and a differential pair with extra current sources is pre-
sented in [76], with the ability to operate both in strong and weak inversion
regions.

There are also other architectures that consist of transistors operating
exclusively in strong inversion region. There are also Gaussian circuits wi-
thout width tunability [77, [78]. More specifically, a CMOS and a BiCMOS
RBF circuit [77] and a Bump circuit which consists of a voltage correlator
[78] are presented. The appropriate tunability in Gaussian curve’s characte-
ristics is achieved through complicated implementations. A complicated and
accurate implementation of a Gaussian function circuit using a 4y, -order
approximation (based on Taylor mathematical series) with current mode
squaring circuits operating in saturation is presented in [79]. A Gaussian
membership function architecture is implemented in [80] based on current
mode squaring and exponential approximation circuits and in [81] based on
a differential coupled amplifier (using two differential pairs). Differential
pairs and a minimum value circuit are used for the realization of a Gaussian
function output [82]. A modified current rectifier is proposed in [83] for
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the realization of the Gaussian function. Moreover, a different architecture
based on current conveyors is proposed in [84].
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Syfua 3.2: Delbruk’s Bump circuit.

Gaussian function circuits and Bump circuits are useful in a variety of
applications. In modern neuromorphic systems there is a need for tunable
Gaussian function circuits to implement weight update mechanisms [85] and
adaptive “stop learning” procedures [65] [86]. Tunable Gaussian function ci-
rcuits have also been used in architectures implementing SVM [48, 49] [47],
support vector domain description algorithm [52], k-means clustering algori-
thm [44], RBF NN [62] 45], RBF classifiers [46] and Gaussian Kernels used
in support vector regression implementations for approximate computing
[53]. Memristive RBF NN architectures are also being investigated using
hybrid CMOS-memristor Bump circuits [87]. Bump circuits have also been
used in various sensor applications such as image edge detection [88§] and
unsupervised anomaly detection [71].

3.3 Proposed Circuit Architecture

The architecture of the original Bump circuit [60] in Fig.3.2, can be modi-
fied to achieve electronically and adjustable width, independent of the other
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Bump parameters. This is achieved by the proposed architecture[89] depi-
cted in Fig.3.3, consisting of a differential difference pair (M,; — M,4) and
a modified current correlator (Mp1 — Mp4).
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Yyfua 3.3: Proposed Gaussian function circuit.

3.3.1 Differential Difference Pair

The differential difference pair consists of two differential pairs which pro-
duce currents with sigmodial shaped curves of adjustable slopes. The diffe-
rential difference pair’s transistors M,; and M,3 have their bulks connected
to a control voltage V.. Input voltage V;;,, is connected to the gates of M,
and M,3 while a parameter voltage V, is applied to the gates of M,o and
M,4. To increase the linearity of the differential difference pairs block, the
ratio of the transistors’ M,,1-M,,2 and M,3-M,4 sizes is set to 2 instead of 1
[90, 911, 92).

Transistors’ dimensions are summarized in Table 3.1. The transistor
sizes are fixed and selected so that they result in a good balance of the
circuit’s performance. It is the topology and control nodes that offer the
desirable tunability. The Bump circuit structure is biased with current Ip;qs.
In our implementation, we set the power supply rails at Vpp = —Vgg =
0.3V, and all transistors operate in the sub-threshold region. The proposed
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architecture provides a Gaussian function output as shown in Fig 3.4 (for
V., =0, V. = =300mV and Ij,,s = 1nA).

TItvoxoc 3.1: MOS Transistors Dimensions.

Block W/L  Current W/L
(pm) Corre- (um)

lator
M1, My, 1.6/04 My, My 0.4/1.6
My, Mps — 0.8/0.4 My, 0.4/16
Mys 0.8/1.6 My 0.6/1.6

My, M,z 1.2/1.6 § §

1.6
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Yyhua 3.4: Output current of the Gaussian function circuit for V., = 0, V, =
—300mV and Ip;qs = 1nA (post-layout simulation).

In each differential pair, connecting the bulk of one of the two transistors
to a control voltage V. results in a shift of the differential currents along the
Vin axis by altering V.. The currents of the first differential pair (M,; and
M,2) are shifted in a symmetric way about the origin (Vj,, = 0) relative to
the currents of the second differential pair (M3 and M,4). As shown in Fig
3.5 an increase in V, results in a shift of the current’s (Ip7,1) transfer curve
to the left. The same change is applied to current Is,». For the second
differential pair, an increase in V, results in a shift of the currents’ transfer
curve to the right, as shown in Fig3.6 for the case of Ij7,3.

Bulk-controlled implementations of Bump circuits are also presented in
[64, [65]. In contrast to those designs, in the proposed architecture there is
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Yyfuo 3.5: Displacement of current Ipsq,1 1o napopetep ohtaye Ve, @9op Iyiqs = InA
ovd V, = 0mV (post-layout simulation).
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Yynua 3.6: Displacement of current Is,3via parameter voltage V¢, for Ipiqs = InA
and V,. = 0mV (post-layout simulation).

summation of currents from the two differential pairs. Adding the currents
flowing through M, and M,3 achieves the desired variability in the slope
of current I7, as shown in Fig 3.7. Similarly for Mo avd M4, currents Ipspo
and Ip;n4 are summed, thus tunability in the slope of current I is achieved ,
as shown in Fig 3.8. The fact that the current correlator’s input currents Iy
and Io have adjustable slopes leads to the desired tunability in the Gaussian
output curve’s width.
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Yyhua 3.7: Tuning of current I; via parameter voltage V., @op Ipiqs = 1nA and
V. = 0mV (post-layout simulation).
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Yynuo 3.8: Tuning of current I via parameter voltage V;, for Ij,s = 1nA and
V. = 0mV (post-layout simulation).

3.3.2 Modified Current Correlator

In the proposed implementation a modified current correlator has been u-
sed, in order to tackle the inherent asymmetries in the standard current
correlator topology. In this work, the transistors’ dimensions are not all
equal (non-symmetric implementation). While transistors M,i, My and
M3 have % = ?::5152’ the transistor’s M4 value of W/L has been changed.
This modification enables the elimination of small dc offsets of the Bump’s
transfer curve along the V;,, axis, with % = 96um 0ving to be the optimal

1.6pum
value for this purpose, as shown in Fig. 3.9.
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In our implementation, we want to achieve more symmetrical results
in the Gaussian function curve for the minimum bias current of 1nA. The
available values of width are multiples of a single transistor with W = 0.2um.
Through parametric simulations for different values of transistor’s width
(Mps) demonstrated in Fig. 3.9, it can be observed that for values of W
greater than W = 0.6um there is a considerable offset of the Gaussian
curve’s center along the V;, axis. Furthermore, comparing the two Gaussian
curves for W = 0.6um and W = 0.4um, the one with W = 0.6um is slightly
more symmetrical across the whole range of V;, values. Thus, we choose
W = 0.6pm as the optimal value for our design (layout).

2.5
— W=0.4um
W=0.6um
2.0 —— W=0.8um

— W=1.0um

0.0 w \ \ ‘ ‘
-03 -0.2 -0.1 0.0 0.1 0.2 0.3

Vin (V)

Yyfuo 3.9: Selection of the optimal W value of transistor Mp4, for Iyi.s = 1nA,
Ve = —300mV and V, = OmV (schematic simulation).

The height, width and center of the produced Gaussian function are
electronically tuned via three circuit’s parameters (Ipqs, Ve and V. respe-
ctively). A single current source Ip;,s provides the bias current for both
differential pairs and controls the height of the Bump while as explained
above a control voltage V. at the bulks of M, and M, alters the width.
The center of the Gaussian function is set by the parameter voltage V.
The output current of the Bump reaches its maximum value when the input
voltage matches the parameter voltage (Vi, = V;).

3.3.3 2-D Implementation

A typical characteristic of Bump circuit architectures is the dimensional sca-
lability. It is realized with two or more cascaded Bump circuits, in which
the output current of one Bump circuit is used as bias current for the next
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identical Bump cell. Each Bump cell has each own input voltage V;, and
parameter voltages V. and V,, while only the first Bump cell is biased w-
ith a current Ip;,s. A cascaded 2 — D implementation using the proposed
Gaussian function circuit as a basic component, is shown in Fig. 3.10. The
scalability of the proposed Bump circuit makes it an interesing candidate
for implementations of multivariate RBFs.

Voo
3
Mp4, Mp2, Mp4, Mp2,
P P
Mpl, Mp3, Mpl, Mp3,
h— —
Imll
Mnl Mn3,| 1:2 |Mn4, Mnl, Mn4,

V. oV Vizori=V, sodh—Ve
) 4

Yyhua 3.10: Proposed 2-D implementation.

3.4 Circuit Theoretical Analysis

In this Section, a mathematical analysis of the proposed Gaussian circuit is
presented. All transistors operate in the sub-threshold region and we use
the MOS model in [59], i.e. for the PMOS and NMOS are respectively:

Lymos = I, e"v(Vo=Va)/Vr (ews—vw)/vT _ €<VD—Vw>/VT) (3.4)

Lymos = I, e (Va=Va)/Vr (e(vwvs)/VT _ e(urvm/vT) (3.5)

In this work, I,, and I, are the pre-exponential currents of transistors
M, and M2 respectively. For every transistor we consider, we use a scaling
factor (m), i.e. ml,, or ml,,, to capture relative W/L value according to
Table 3.1.
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3.4.1 Differential Difference Pair Analysis

In this work two transistors, M1 and M4, of the differential difference pair
are bulk-controlled and their bulks are connected to the parameter voltage
V., as shown in Fig.3.2 All four transistors M, to M,4 operate in saturation
region with ohtayec Vp >> Vg. Thus, we are led to a simplified version
of Eq.3.5. More specifically for transistors M,; and M,, their saturation
currents are given by the following expressions (using the appropriate aspect
ratio W/L):

IM L — 2 IO e(/fn‘/:inf‘/Sl‘i‘(lfﬁn)‘/c)/VT (36)

Iy =2 Ione(HnVr*Vser(l*Nn)Vc)/VT (3.7)

Transistors M,o and M,3 have their bulks connected to Vgg. Their satura-
tion currents are given by the following expressions (using the appropriate
aspect ratio W/L):

Ing,, =1, e(FnVe=Vs14+(1=kn)Vss)/Vr (3.8)
I, =1, e(FnVin=Vsa+(1-rn)Vss)/Vr (3.9)

Transistors M,,5 — M,7 operate in saturation as current mirrors. According
to their relative W/L values, the bias current I;,s is equal to:

1 I
Tpins = Qw (3_10)
1 I
Ibias =2 M —;)_ M (311)
for the two differential pairs. Combining Eq.3.6,3.8 and 3.10 we conclude:
3Ibias

Dt = e VeV F DV Vas) Ve (312)
In order to simplify the expression, we set AV =V, —V;, and V1 = V. —Vgg
and the previous equation is transformed in the following way:

?)Ibias

It = BV Ve (3.13)

In this step we combine Eq.3.7,3.9 and 3.11. The drain current of M,3 is

given by:
I . 3Ibias
Mns = o fo(knAV+(1—Kn)Ver)/Vr

(3.14)
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The current I; is equal to the sum of Iz, and Ip,,, as shown in Fig.3.2
The total expression of I is:

I — 3Ibias
1= 2+ e(kn AV +(kn—1)Ve1) /Vr
3Ibia5
2 4+ 4e(knAV+(1—=kn)Ve1)/Vr

(3.15)

The current I is equal to the sum of Iy, and Iyy,,, as shown in Fig.3.2.
By using the same methodology we can calculate the total expression of I
which is given by:

_ 3Ibias
T 2 4 e(—RnAVH(kn—1)Ve1)/Vr
+ SIbias

2 4+ 4e(—rnAV+(1—kn)Ver)/Vr

I
(3.16)

3.4.2 Modified Current Correlator Analysis

The current correlator’s transistors’ dimensions are shown in Table 3.1. Sup-
posing that the output node’s voltage (drain of transistor M,3) is sufficiently
low to ensure operation in saturation region, its drain current, using Eq.3.4,
is given by the following expression:

Towt = I g = 1, e(VDM;m*"PVDMleF("Pfl)VDD)/VT (3.17)

P P

where Vp,, , and Vp,, , are drain voltage of transistors Mp; and M. Tran-
sistor’s M drain current is given by:

I = Iy, = 1, PP~ V00V (3.18)
Transistor’s M2 current is given by:
Iy = Ing, = I, PP~ Par) V1 (3.19)

Transistor My, operates in triode region. The drain current of transistor
M,y is equal to the drain current of transistor M3 and given by:

3[ eRP(VDD_VGMp4)/VT (e(VDD_VDD)/VT _ e(VDNIp4_VDD)/VT)

IMP4 = 5 op
(3.20)

3
Towt = §Io €

] 5p(VDD—=VDp1,0)/ VT (1 _ e(VDzvfp4_VDD)/VT) (3.21)
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where VDrre = Ve and Iout = Ing,; = Iy, as shown in Fig. 3.2.
Solving Eq. 3.17-3.19 for Vp,, ., Vp,,,, and Vp,, ,, and replacing them

into Eq.3.21 we get:
Iout = §IQ 1- Lout (322)
2 I

The expression of current correlator for the proposed topology is expressed
in the following way:

Shiy

- 3.23
I + %-72 ( )

Iout =

3.4.3 Bump Circuit Analysis

In order to simplify the expression of Eq.3.15 and Eq.3.16 we set x =
kn AV /Vp and
Yy = (Hn — I)WI/VT .

_ 3l pias ( 4+ e%eY + 4e%eY >

I
2 2+ e%eY + deTeY + 227

(3.24)

By using the same methodology the simplified expression of I which is given
by:

3pias 4e%® 4 eTeY + 4eTeY
I, = 3.25
2 2 2 + e%e¥ + 4eTeY + 22T (3.25)
Combining Eq.3.23-3.25:
31y; 6e " +3M)(2e* + M
[out - bias ( ¢ + )< c + ) (3.26)

2 (" +e* + M) (66 + de—* + 5M)

Finally, the output current of the fully tunable Bump circuit is expressed
using hyperbolic cosine equation as:

3pias 12 4+ 3M? + 12M cosh x

Lout = 2 (2coshx + M) (6e* + 4e=* + 5M) (3:27)
where intermediate variable M is given by:
M =29+ % = 2~ (n =D (Ve=Vss)/Vr . e(rml)(v;VSS)/VT (3.28)
and x has been defined as:
y = fonlVr = Vin) (3.29)

Vr
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The Gaussian circuit’s current I,,; depends on the input voltage Vi,, and
parameters Ip;,s, Vi and V.. The theoretical output current of the Gaussian
circuit, according to Eq.3.27 is presented in Figs.3.11,3.12,3.13 Each para-
meter (Ve, V. and Ip;,s) independently tunes a characteristic of the Gaussian
curve. We alter the value of one parameter while the others are kept con-
stant. Parameter V. adjusts the Gaussian curve’s width as shown in Fig.3.11
Parameter V. sets the mean value (center) of the Gaussian function’s out-
put, as shown in Fig.3.12 Parameter Iy;,s scales the height of the Gaussian
curve, as shown in Fig.3.13 The results of the theoretical analysis illustrate
the correct operation of the proposed Gaussian function circuit.

1 ‘ ‘ ‘ ‘
—Vc=—300mV L —Vc=60mV
08l —VC=—180mV —Vci‘ISOmV |
Vc=-60mV Vc—300mV
< 0.6
£
304
0.2
0 |
-0.3 -0.2 -01 0 0.1 0.2 0.3

Vin (V)

Yyhua 3.11: Width tuning in Theoretical output function of the Bump circuit, for
Tpias = InA and V. = 0mV (MATLAB simulation).

15 : : : :
—Vm=—250mV —Vm=50mV
_Vm=—150mV —Vm=150mV

Vm=-50mV Vm=250mV

— 17

<

£

~ 05

0 ! ¥
03 02 01 0 01 02 03
Vin (V)

Yyhua 3.12: Center adjustment in Theoretical output function of the Bump circuit,
for Ipiqs = 1nA and V., = —300mV (MATLAB simulation).
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Yynua 3.13: Height scaling in Theoretical output function of the Bump circuit, for
V. = =300mV and V,. = OmV (MATLAB simulation).

Yyhua 3.14: Layout of the implemented Gaussian function circuit.

3.5 Simulation Results

The proposed ultra-low power, low-voltage, fully tunable, bulk-controlled
Gaussian function circuit has been designed in TSMC 90nm CMOS process,
using the Cadence IC design suite. The power supply rails are Vpp =
—Vgs = 0.3V, and all transistors operate in the sub-threshold region. The
Gaussian circuit’s simulation results are from post-layout simulations. The
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layout of the proposed 1-D Gaussian function architecture (Fig.3.3 is shown
in Fig.3.14, where the area is 50.45um = 25.85um. In order to deal with
manufacturing considerations and mismatches, dummy transistors were used
and transistor matching is applied only for transistors with the same length
(L) based on the common-centroid technique.

The width tunability of the proposed Gaussian function circuit, via pa-
rameter voltage V., is shown in Fig.3.15, for constant values of Ij;,s = InA
and V. = 0. An increase in parameter voltage V. leads to an increase in the
Gaussian curve’s width. The mean value of the derived Gaussian function
is determined by voltage V,., as illustrated in Fig.3.16, for constant values
of Ipies = InA and V., = —300mV. Proper operation is achieved for a w-
ide parameter voltage V, range. Its values are between V,. . = —250mV
and V;, .= 250mV (83.3% of the power supply range). The height of the
Bump output current is set by the bias current Ij;,s as shown in Fig.3.17,
for constant V,, = 0 and V., = —300mV. The tunability of the Gaussian
function’s characteristics derived from post-layout simulations and shown in
Figs.3.15-3.17 matches the expected behavior depicted in Figs.3.11-3.13.

2.00
— V.= —300mV — Ve=60mV
V= —180mV 7~ — Vc=180mV
1.50 — Ve=300mV
g
— 1.00
E
S

-03 -02 -01 00 01 02 0.3
Vin (V)

Eyhuo 3.15: Width tuning of the output current with voltage V;, for Ipqs = 1nA
and V,. = OmV (post-layout simulation).

The output current of two cascaded Bump cells is represented in 3 — D
space and is depicted in Figs.3.18-3.21. The independent tunability of the
Gaussian curve’s characteristics (width, height, center) is also achieved for
2— D RBFs. The first of the two cascaded Bump circuits of the architecture
in Fig.3.10, is biased with Ij;,s = 2nA. Setting control parameters V., =
Veo = 300mV and V.1 = Vo = 0V, maximum width is achieved as shown
in Fig.3.18. By keeping Ip;qs, Vr1 and Vo values constant while altering
Vo1 = Vo = =300mV , the Gaussian curve’s width is independently adjusted,
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Yynua 3.16: Center adjustment of the output current with voltage V;., for Ip;.s =
1nA and V., = —300mV (post-layout simulation).
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MyAuo 3.17: Height scaling of the output current with bias current Ip;qs, for V., =
—300mV and V, = OmV (post-layout simulation).

as shown in Fig.3.19. Keeping the parameter voltages constant at V,.; =
Vo = —300mV and V4 = Vo = 0V and increasing Ij;,s = 4nA, height
scaling of the 2 — D output is achieved, as shown in Fig.3.20. The tunability
of the RBF’s center is presented in Fig.3.21, by setting parameter voltages
Vi1 = Vo = 100mV while the other parameters are the same as in Fig.3.20.
The 2 — D implementation’s results confirm the desirable scalability of the
proposed circuit.

The sensitivity behavior has been evaluated using the Monte-Carlo a-
nalysis tool for N = 100 points. The corresponding histogram for the Bump
circuit’s center of voltage is shown in Fig.3.22. The center of the voltage is
Vinean = 1.7TmV, and the standard deviation is oy = 4.3mV. It confirms
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Yyhua 3.18: A 2 — D Gaussian Function with bias current ;s = 2nAd, V, = 0V
and V, = 300mV (post-layout simulation).
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Eyhua 3.19: A 2 — D Gaussian Function with bias current ;s = 2nA4, V, = 0V
and V, = —300mV (post-layout simulation).

the correct performance and accuracy of the proposed circuit.
The simulation results confirm the proper operation and performance of
the proposed Gaussian function circuit, in accordance with the theoretical
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Yynua 3.20: A 2 — D Gaussian Function with bias current ;s = 4nd, V. = 0V
and V, = —=300mV (post-layout simulation).
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Yynua 3.21: A 2— D Gaussian Function with bias current Iy, = 4nA, V, = 100mV

and V. = —=300mV (post-layout simulation).

analysis. There are specific factors resulting in slight variations between the
theoretical results as shown in Figs.3.11-3.13 and simulation results as sho-
wn in Figs.3.15-3.17. In theoretical analysis the sub-threshold slope factors
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Yyfuo 3.22: Center value sensitivity via Monte-Carlo simulation.

kn and kp, are considered to be constant, which is typical in approxima-
te analysis of sub-threshold circuits. However, an increase in gate-to-bulk
voltage results in a small increase in the slope factors’ values [59]. This ap-
proximation justifies small variations in the form of the Gaussian function
output. For transistors M,5 — M7 (current mirrors) the current mirroring
ratio for small currents (1vA-5vA) diverges from the aspect ratio (2). This
is illustrated in the height difference of the Gaussian function output be-
tween theoretical and simulation results. Thus, in simulation results the
output current exceeds 1nA for bias current Ip;,s = 1nA. This is vital for
the scalability of the proposed architecture without having degradation of
the output current. In Figs.3.11-3.13 and Figs.3.15-3.17 there is a small dc
offset of up to 10mV for increased bias current (more than 5nA). This is a
result of the non-symmetric current correlator topology, which achieves the
appropriate symmetry in small currents (Ip;,s = 1nA) and sufficient current
scaling.

3.6 Comparison Study and Discussion

The proposed Gaussian function circuit is compared with recent literature
works in terms of performance and design characteristics and the results
are summarized in Table 2. All the implementations are in CMOS process
except of [87] which is designed in LT-SPICE with PTM transistor models
and MS memristor model and [64] which uses quad MOS transistor arrays
ALD1106 and ALD1107, manufactured by Advanced Linear Devices (ALD).

Low power consumption is a vital characteristic of Bump circuits that
are used for the implementation of RBF NNs. The previous works opera-
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ITivoxoc 3.2: Performance Summary and Comparison.
*Add extra stages in order to achieve width tunability.

Tech- Power Power Minimum No of Ind. Pa-
nology Consum- Supply Tpias Tran- ram. Tu-
ption sistors nability
This 90nm 3.9nW 0.6V 1nA 11 YES
work
[61]] 130nm 18.9nW 3V 1nA 14 YES
[62] 180nm 13.5nW 0.9V 40nA *9 YES
[87] Discrete 4.1uW 0.7V 1A 22 YES
[45] 130nm 10.5uW 1.2V - x13 YES
[63] 180nm - 1.3-2V - 4 NO
[64] Discrete - 5V 2nA 10 YES
[66] 350nm 650nW 1.3V 50nA 17 YES
[67] 180nm 350nW 0.7V 50nA 31 YES
[48] 180nm - 1.8V 100nA x11 YES
[46] 500nm OuWw 3.3V - 19 YES
[72] 180nm 160nW 0.75V 35nA 8 YES
[49] 180nm - 1.8V 50nA 14 YES
[79] 180nm 100pW v 10pA 30 YES
[8O] 350nm - 3.3V 10pA 45 YES
[81] 350nm 220uW 3.3V 9uA x14 YES
[82] 180nm 27uW 1.8V 2uA 15 YES
[83] 180nm 23.7uW 2V 5uA 32 YES

ting with ultra-low power consumption are [61] at 18.9nWW and [62] at only
13.5nW. Our work, provides a significant improvement in power consum-
ption compared to literature, operating at only 3.9nW (reduction of power
consumption by 71.1% compared to 13.5nW).

Power supply voltages used in literature implementations range from 5V
down to 0.7V. The minimum power supply among the previous works is
achieved in [87, [67] (0.7V') and [72] (0.75V). In the proposed architecture,
power supply voltage is further reduced at only 0.6V. Our implementation
is biased with minimum Ip;,s = 1nA, which is smaller than 2nA [64] and
equal to 1nA [61].

The implementation with the minimum number of transistors (only 4)
is presented in [63], but it lacks tunability in width. The proposed Gaussian
function circuit, is a compact and low area implementation, consisting of
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only 11 transistors. Architectures with similar number of transistors are
[72] (8 transistors) [64] (10 transistors) and [61], 49] (14 transistors). The
compact Bump circuit in [62] (9 transistors) uses extra logic and multiplexer
circuits to update the output curve’s width, while for the same purpose in
[48] (11 transistors) an extra DAC is used. Also, in [45] (13 transistors) extra
switches and multiplexer circuits are used while in [81] (14 transistors) an
extra stage for the controlling current implementation is used in order to
achieve the desirable behavior. The area of the proposed circuit (layout) is
1304m? and only [61] has a smaller layout area (988um?), while in other
implementations [62] 66, 67, 46| [83] it ranges from 2475um? up to 13054um?.

3.7 2nd Proposed Gaussian Function Circuit A-
rchitecture

3.7.1 Proposed Architecture and Analysis

In this section, the proposed architecture and its mathematical analysis are
presented. The implemented bump circuit is an alteration of the original
Delbruck’s SB [60]. This modification achieves ultra low power consumption
(4nW), low voltage power supply (Vpp = —Vgg = 0.3V) and electronically
controllable height, width and center of the produced Gaussian curve.

The proposed bump circuit is shown in Fig.3.23 and its output cur-
rent is a Gaussian function in relation to the input voltage (Vi) as shown
in Fig.3.24. Our architecture is composed of two subcircuits. In this w-
ork a modified current correlator (non-symmetric implementation) is used,
and the differential pair of Delbruck’s SB is substituted by a NMOS bulk-
controlled block (M1 — My4 and M) [60]. Tunability is achieved with the
use of three circuit’s parameters.

Parameter voltage V., which is connected to the bulks of transistors
M1 — M2, adjusts the width of the Gaussian curve, while parameter voltage
V,n, tunes its center. All other NMOS have their bulks connected to Vgg
whereas the bulks of all PMOS are connected to Vpp. Furthermore, bias
current Ip;,s sets the height of the Gaussian function. The tunability of
these three characteristics (width, height, center) is further explained via
Mathematical Analysis and Simulation Results. All transistors operate in
the sub-threshold region and their dimensions are summarized in Table3.3 .

The mathematical analysis of the proposed bump circuit is presented
below. The MOS model in [?] is used to describe the operation of the
circuit’s transistors in the sub-threshold region according to the following
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Syfue 3.23: 2nd Proposed Bump circuit.

TIivaxoc 3.3: MOS Transistors Dimensions.

Block W/L Current W/L

(um) Corre- (pm)
lator
M- 1.0/0.1  Mpy,Mp3 0.8/0.1
Mn2
My3,M,y 1.0/1.6 My, 0.8/0.4
My, My 0.2/1.6 M, 2.4/04

equations for PMOS and NMOS respectively:

Lymos = I, er(Vu=Va)/Vr (e(vs—vw)/vT _ e(VD—vw)/vT) (3.30)
mMos Op .
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Yyhua 3.24: Output current of 2nd Bump circuit for Ip;qs = 5nA, Vo = —=300mV
and V,,, = 0mV.

Lamos = L, e Vo=Vl Vi (Ve Vo) Ve (Ve =Vio) Vi) (3.31)

We consider the I,, and I,, values of reference for PMOS and NMOS
transistors respectively. For every transistor we consider, we use a scaling
factor (m), i.e. ml,, or ml,,, to capture the relative W/L value according
to Table3.3.

3.7.2 Modified Current Correlator Analysis

The modified current correlator is the same circuit block that was analysed
in a previous section of the 1st proposed bump circuit so we have:
31

Tyt = — 122 3.32
FT L 30 (3.32)

3.7.3 NMOS Bulk-Controlled Block Analysis

M1 — M4 and M4 are the NMOS bulk-controlled block’s transistors. Tran-
sistors M, and M2 have the same characteristics. They operate in sub-
threshold triode region and their bulks are connected to a voltage V.. Their
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triode currents are given by:

I = 161, e Vsnms =Ve)/Vr (o(Ve=Vi)/Vr _ o(Ve=Virrns)/Vr) (3.33)

I = 161,, e Vsana =Vl /Vr (o(Ve=Vi) Ve _ o(Ve=Viprna)/ V) (3.34)

where Vg,, . and Vs,, , are the source voltages of transistors M3 and Mp4.
Transistors M,3 and M,4 operate in saturation region and their currents
are given by:

I =1, e(FnVint(1=rn)Vss—Vs, )/ Vr (3.35)

Iy = I, e(FnVmt+(=rn)Vss=Viyy,,)/Vr (3.36)

In this step, we combine Eqs.3.33 and 3.35. The current I is given by:

I{Hn‘i‘l) +leAe((’fn_l)vss_ﬁnvin)/vT — lee_VS/VT (3.37)

On

We combine Eqgs.3.34 and 3.36. The current I5 is given by:

I
Iéfﬂn+1) _|_ IxQ%e((nnfl)Vssfﬂan)/VT — I$267VS/VT (338)
O

n

The parameter term I,; which depends on the input voltage V;,, and para-
meter voltage V. ¢ given by the following expression:

le — 16[5271"‘1)e(ff%‘/;n‘i‘(l—f@n)vc‘i‘(nn_R%)VSS)/VT (339)

The parameter term [I,» which depends on the parameter voltage V,, and
parameter voltage V. is given by the following expression:

Lyp = 16I{n 1) Vit (1 mmin) Ver (mn =) V) Vi (3.40)

With M, operating in triode, the voltage Vs in Eqs.3.37 and 3.48 is
such that:
e*VS/VT _ _Il - I2 + Ibias
Tpias€Vss/Vr
Substitution of Eq.3.41 into Eqs.3.37 and 3.38 leads to the following non-
linear system of equations with unknown I; and Is:

(3.41)

I{Hn—i_l) +Il < I;‘zj/l /V Iﬂ?le((nn—l)vss—linvin)/VT>
Trias o0 o, (3.42)
Ibias - IQ

1l 5 v
Tyjaue"55/V0
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I I
[t | g x2 La2(50-1)Vis—rnVim) Vi
2 * \DpiaseVss/Vr ' T, ‘ (3.43)
Tvias — 11 .
B m2IbiaseVSS/VT

3.7.4 Theoretical Behavior of the Bump Circuit

The behavior of the proposed bump circuit is evaluated via the numerical
solution of the non-linear system of Eqs.3.42 and 3.43. The solution is re-
ached with the aid of MATLAB’s fsolve function. The theoretical output
current is depicted in Figs.3.25 and 3.26.. In Fig.3.25, all the circuit’s pa-
rameters are constant except from parameter voltage V., which tunes the
width of the Gaussian function. In Fig.3.26, parameter voltage V,, alters
independently the center of the Gaussian curve. In both cases, the propo-
sed circuit’s theoretical analysis demonstrates its appropriate behavior and

performance.
5 : :
———V_=-300mV
-~V =-233mV
4! V =-167mV
- V_=-100mV
C
V =-33mvV \
?‘? 3t VvV, =33mV //,f‘ \ \ \
~v=100mv /| 1\
£ ¢ / AW
—V =167mV /| IARAN
S ¢ " L\
Sol —vE23my) |
1 L

-03 -02 01 O 01 02 03
Vin (V)

Eyfua 3.25: Width tuning in Theoretical Output current of 2nd Bump circuit, for
Iyiws = 5nA and V,,, = 0mV.
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7Vm=-167mV 7vm=33mv
7Vm=-1OOmV —V_=100mV
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4 Vm=-§3mV Vm=1 67mV
/\\ /\
// \ |
[\
/ A /
- F r/ / \\ \ /
w 3 /' \ “ /
S / \ \ /
~— / \ \ /
| \ \/
- / \ )t
3 / |
~ 2 [ ’/ \ / \
“/r \\ / \
/ / \
1 / \ \
4 g \ \\\\\
0 — S~
-03 02 01 O

Vin (V)
Syfua 3.26: Center adjustment in Theoretical Output current of 2nd Bump circuit,

for Iyjus = 5nA and V, = —300mV.

3.7.5 Cascaded 2-D Implemenation

The previous subsections analyze the 1 — D bump circuit’s architecture and
mathematical analysis. However, the bump circuit’s architecture is scala-
ble, extending to more dimensions. Multivariate RBFs are implemented by
cascaded bump circuits. These are formed by two or more bump circuits, in

which the output current of each bump cell is used as the next bump cell’s
bias current. Different input voltage and circuit’s parameters (Vi,,, V) are

used in each cascaded bump circuit’s stage. A 2 — D implementation which

uses two bump circuits is shown in Fig.3.27.

3.7.6 Simulations Results
The proposed ultra-low power (4nW), low voltage power supply rails (Vpp =
—Vss = 0.3V), fully-tunable bump circuit has been designed and evaluated
in TSMC 90nm CMOS process, using the Cadence IC design suite. All tran-
sistors operate in the sub-threshold region and the minimum bias current
is Ipias,min = 3nA. In theoretical analysis, we prove that width and center
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Yyfuo 3.27: 2 — D Implementation schematic of 2nd Bump Circuit.

depend on parameter voltages V. and V,, respectively. In this Section, si-
mulations and results are presented and analyzed in order to confirm the
expected theoretical behavior.

3.7.7 1-D Simulation Results

The Gaussian curve’s width is controlled via parameter V.. In Fig.3.23 the
M1 — My transistors’ bulks (operating as diodes) are connected to the
voltage V.. The value of V_ affects the transistors’ transcoductance g,,, thus
altering the slope of the differential block’s currents I; and I, as demon-
strated in Figs.3.28 and 3.29. As a result, an independent tuning of width
is achieved (without affecting the height and center) by altering the bulks’
voltage V. as shown in Fig.3.30. The scaling of the Gaussian Function’s
height is achieved by adjusting the bias current (Ip;,s) as shown in Fig.3.31.
An increase in the bias current results in a growth in the Gaussian curve’s
height. Moreover, parameter voltage V,,, adjusts the center of the Gaussian
curve, as shown in Fig.3.32. The output current’s value is maximized when
the input voltage V;,, of the bump circuit matches the parameter voltage Vi,
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—— Vc= —300mV
—— Ve=—233mV
51— ve=-167mv
— Vc=—100mV
— Vc=—33mVv
41— ve=33mv
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— Vc=167mV
Q 3] Ve=233mVv
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Yyfuo 3.28: Tuning of NMOS bulk-controlled block’s current [; via parameter
voltage V., for Ip;,s = 5nA and V,,, = OmV.

— V= —-300mV
57 —— Ve= —233mV
— Ve= —167mV
— Ve= —100mV
4 — Ve= —33mV
— Ve=33mv
—— Ve=100mV
— 31 — Ve=167TmV
<é Ve =233mVv
N
<2
1 4
0 4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Vin (V)

Syfua 3.29: Tuning of NMOS bulk-controlled block’s current I, via parameter
voltage V., for Ip;us = 5nA and V,,, = 0mV.
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Yy 3.30: Width tuning of the output current of 2nd Bump circuit with control
voltage V., for Ij;us = 5nA and V,,, = 0mV.

1 8 ] —— Ipias =3NA
—— Ipias = 6NA
1 6 1 — Ipias=9nA
—— Ipias = 12nA
14‘ - Ibias = 15nA
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S—" 10 —— lb,‘as=27nA
s —— Ipias = 30nA
5 8
—

-03 -02 -0.1 0.0 0.1 0.2 0.3
Vin (V)

Yynuo 3.31: Height scaling of 2nd Bump circuit with bias current Ip;,s, for V., =
—300mV and V,, = 0mV.
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Synua 3.32: Center adjustment of 2nd Bump circuit with programmable voltage
Vi, for Ip;qs = 5nA and V, = —300mV.
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Yyfuo 3.33: A 2 — D Gaussian Function of the 2nd Bump circuit with bias current
Tpias = 10nA and V., = 300mV.
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Yyhua 3.34: A scaled height 2— D Gaussian Function of the 2nd Bump circuit with
Tpias = 30nA and V, = 300mV.

3.7.8 2-D Simulation Results

The previous figures analyze the behavior of 1—D bump circuit. In this step,
2— D Gaussian Functions are shown in three dimensional space. The output
current of the cascaded bump implementation is shown in Fig.3.33. We bias
the first bump circuit with Ip;,s = 10nA. Both Gaussian circuits’ bulks
are biased with V., = 300mV and parameter voltage V,, is kept constant
at 0V. In Fig.3.34, we increase the bias current’s value (lp;qs = 30nA),
while the other parameters are kept constant. In Fig.3.35 we use the same
bias current (Ip;,s = 30nA), but the bulks are biased with V., = —300mV,
which increases the Gaussian curve’s width, in comparison with the results

in Fig.3.34.

The sensitivity behavior has been evaluated using the Monte-Carlo a-
nalysis tool for N = 100 runs. The corresponding histogram for the bump
circuit’s center of voltage is shown in Fig.3.36. The mean value of the vol-
tage is Viean = 2.3mV, and the standard deviation is oy = 5.6mV. It
confirms the correct performance and accuracy of the proposed circuit.
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Yyfuo 3.35: A scaled height and width 2 — D Gaussian Function of the 2nd Bump
circuit with Ip;qs = 30nA and V., = —300mV.
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Yynua 3.36: Center value sensitivity of the 2nd Bump circuit via Monte-Carlo

simulation.
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3.8 3rd Proposed Gaussian Function Circuit A-
rchitecture

3.8.1 Proposed Circuit Architecture

The proposed architecture is motivated by Delbruck’s SB and is an ul-
tra low power, fully tunable bulk controlled Gaussian circuit is presented.
It is an ultra low power architecture because the power supply rails are
Vbp = —Vgg = 0.3V achieving a power consumption of only 3.3nW. Mo-
reover, the mean value, amplitude, and deviation of the Gaussian function
are electronically programmable.

The proposed Gaussian circuit consists of two subcircuits, a modified
current correlator (Mp; — My and My7; — Mg, which is a symmetric imple-
mentation) [61],45] and a differential block (M1 — Mpa, Mps, Mps and M),
which replaces the SB’s differential pair, as shown in Fig.3.37. The symme-
tric current correlator architecture reduces the output current’s offsets for
input voltage V;, near the power supply rails. On the other hand, the dif-
ferential block enables tunability in the Gaussian curve’s deviation. The
proposed circuit provides an output current which is a Gaussian function in
relation to the input voltage V;y,, as shown in Fig.3.39. The Gaussian cu-
rve’s deviation, amplitude and mean value are controlled by three circuit’s
parameters (Vg, Ipiqs and V).

3.8.2 Simulation Results

The proposed ultra low power, fully tunable bulk controlled Gaussian circuit
has been designed in TSMC 90nm CMOS process, using the Cadence IC de-
sign suite. All transistors operate in the sub-threshold region and the power
supply rails are Vpp = —Vgg = 0.3V. The dimensions of the Gaussian
circuit’s transistors are shown in Table3.4. The Gaussian circuit’s simula-
tion results are from post-layout simulations. The layout of the proposed
architecture is shown in Fig.3.38, where the area is 38.9um = 50.3um.

The parameter voltage V. is connected to the bulks of the differential
block’s transistors (M1 — Mpa, Mps, My). In contrast, the bulk voltages of
the current correlator’s PMOS transistors are biased in Vpp and the bulk
voltages of the current mirror’s NMOS transistors M,5 and M,g are biased
in Vgg. By increasing the bulk voltage V. we achieve higher transistors’
transcoductance g,, values. This results in more current flow for /1 and I as
shown in Figs.3.40 and 3.41 respectively. Thus, the deviation of the Gaussian
Function output is increased as shown in Fig.3.42, without affecting the
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Yyfua 3.37: 3rd Proposed Gaussian circuit.

amplitude and mean value. The bias current parameter (Ip;,s) affects the
amplitude of the Gaussian curve, as shown in Fig.3.43. The increase in bias
current, achieves an increase in the amplitude of the Gaussian curve. The
mean value of the Gaussian curve is altered via parameter V,., as shown in
Fig.3.44. The maximum output current is achieved when the input voltage
is equal to the parameter voltage (V, = V;.).

The sensitivity behavior has been evaluated using the Monte-Carlo a-
nalysis tool for N = 100 points. The corresponding histograms for the
bump circuit’s center (mean value) and height are shown in Figs.3.45 and
3.46 respectively. The mean value of the center is Vieqn = 1.6mV, and the
standard deviation is oy,, = 4.9mV, while the mean value of the height
is Vheight = 1.91nA | and the standard deviation is oy = 0.14nA. Both
confirm the correct performance and accuracy of the proposed circuit.

The proposed Gaussian circuit architecture demonstrates dimensional
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Yyuo 3.38: Layout of the 3rd implemented Gaussian circuit.

TTivaxoc 3.4: MOS Transistors Dimensions.

Block W/L Current W/L
(um) Corre- (um)

lator
M1- 1.2/1.6 Mpl— 0.4/1.6
Ma Mpa

Mys,Mys 4.8/0.8 My7,Mps 0.4/1.6
M5, My 0.4/1.6 - -
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Yynua 3.39: Output current of the 3rd Gaussian circuit, for Ipas = 3n4, Ve =
—300mV and V,. = OmV (post-layout simulation).

scalability and can be used to implement multivariate Kernels. Such kernel
architectures can be realized with two or more bump circuits connected in
a cascaded fashion. Only the first bump circuit is biased with a current
Ipiqs while the output current of each cell is used as the bias current for
the next bump cell. Each Gaussian circuit cell has each own parameter
voltages V., V. and input voltage V;;,,. The post-layout simulation results of
a 2 — D Cascaded bump circuit implementation are shown in Figs.3.47-3.49
for different values of parameter voltages V.1, Voo and V1, V9. The 2 — D
implementation’s simulation results confirm the desirable scalability of the
proposed circuit.

3.8.3 Circuit Analysis

In this section a mathematical analysis of the ultra low power, fully tunable
bulk controlled Gaussian circuit is presented. All transistors operate in the
sub-threshold region and we use the MOS model in [?] same as in previous
implementations.
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Yyhuo 3.40: Tuning of current I; via parameter voltage V¢, for Ip;,s = 3nA and
V. = 0mV (post-layout simulation).

3.8.4 Symmetric Current Correlator Analysis

The symmetric current correlator consists of two classic current correlator
sub-circuits (Mpl, Mpz, Mpg, Mp7 and Mpl, Mpg, Mp4, Mpg) [60] which pro-
duce two equal currents Ips,7 = Iprpg - The drain current of transistor M7,
which operates in saturation region, is given by the following expression:

Lout = Ingyy = I, P~ VPD =50V Dar HVD01) [V (3.44)
where Vp,, , and Vp,, . are the drain voltages of transistors My, and Mp3
respectively. Transistor’s M, current is given by:

I = Ingy, = I, e "P0 ™ Vorrn)/ Ve (3.45)
where Vp,, . is the drain voltage of transistor Mp;. Transistor’s M2 current
is given by:

I = Ing, = L, €™ VPP~ Vor1p0)/ V2 (3.46)

Both transistos M3 and M7 have the same current. Transistor M3 ope-
rates in triode region. The drain current for transistor M3 is given by:

IM s = Io eHP(VDD_VDMpl)/VT (1 _ e(VDMpB’VDD)/VT) (3.47)
P P
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Yyfua 3.41: Tuning of current I via parameter voltage V., for Ip;,s = 3nA and
V. = 0mV (post-layout simulation).
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Yynua 3.42: Deviation tuning of the 3rd Bump circuit with control voltage V;, for
Tpias = 3nA and V,. = 0mV (post-layout simulation).

Combining Eqs.3.44-3.47 and using Iy, = In,s (symmetric current corre-
lator implementation) we conclude:
11
I + 1

Tout = 2 (3.48)
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Yyfua 3.43: Amplitude adjustment of the 3rd Bump circuit with bias current Ip;,s,
for V. = —300mV and V,. = 0mV (post-layout simulation).
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Yyhuo 3.44: Mean value adjustment of the 3rd Bump circuit with voltage V., for
Ipias = 3nA and V, = —300mV (post-layout simulation).
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Synua 3.45: Center sensitivity of the 3rd Bump circuit via Monte-Carlo simulation
(post-layout simulation).
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Yyfuoe 3.46: Amplitude value sensitivity of the 3rd Bump circuit via Monte-Carlo
simulation (post-layout simulation).

3.8.5 Differential Block Analysis

The differential block consists of seven transistors, with six of them M, —
M4, M5 — Mg, having their bulks connected to a voltage source V.. Tran-
sistors M3 and M,4 operate in the saturation region and their saturation
currents are given by:

L=1, e(FnVin=Vs s +(1=rn)Ve) /Vr (3.49)

1'2 — IO 6(577,‘/7'_‘/51\4”4+(1_"{")‘/C)/VT (350)



3.8. 3RD PROPOSED GAUSSIAN FUNCTION CIRCUIT ARCHITECTURES1

Yyfua 3.47: A 2 — D Gaussian Function of the 3rd Bump circuit with bias current
Tpias = 10nA, Vi1 = Vo =0V and V.q = Vo = 300mV (post-layout simulation).

The weak inversion models of saturation current for transistors My,5 and
M6 are given by:

I, =241, (=YD TVS s T (Rp=1)Ve) [V (3.51)
»

Iy = 241, e VDo TVsnrna t e —1)Ve)/ Ve (3.52)
D

In this step we combine Eqs.3.49 and 3.51. The new expression of Vp,, ,
and Vj;, is given by:

1
Vo Ve — (S EE VitV v (D ? 3.53
e~ 'Pu e ST (3.53)

Also, we combine Eqs. 3.50 and 3.52. The new expression of Vp,, , and
V, is given by:
1
< Knp—K 2 "p
Nt _ (v (B ) .
¢ ¢ 241,1, (3.54)
Transistors M,; and M, operate in the sub-threshold triode region and
their currents are given by:

I = I, emn(Vin=Ve)/Vr (o(Ve= V) /Ve _ o(Ve=VDyp1)/ V) (3.55)
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Yyhua 3.48: A 2 — D Gaussian Function of the 3rd Bump circuit with bias current
Tpias = 10nA, Vg = V,p =0V and V4 = Vo = —300mV (post-layout simulation).

I = I, e (Ve Vel /Vr (o(VemVa) Vi _ o(Ve=VDy15)/ Vi) (3.56)

The equation of current I; and Is using the previous equations is given by:

1
Ii + 179% " G(W)VE/VTG(%ZW)VC/VT
Lo, ~ \24lo, 1o, (3.57)

— o(RnVat(1=kn)Ve=Vs) Vi
where I, = I; for V, = V;,, and I, = I for V, = V,.. The voltage Vg of the
eqs.3.57 is given by:

e~ Vs/Vr —
IbiaseVSS/VT

Substitution of 3.58 to 3.57 leads to the following non-linear system
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Eyfua 3.49: A 2 — D Gaussian Function of the 3rd Bump circuit with bias current
Tpias = 10nA, Viy = Vo = 100mV and V.q = V.o = —300mV (post-layout simula-
tion).

equation which involves I; and Is:

I I (A=rn)Vet+rnVin—Vsgg
1 1 + On e Vr

IO" Tyias
1
B R N e )
241, 1,,
IO (Ibias IQ ) (1*’€n)Vc+f€nVin7VSS
Ibias Ion IOn
(1—kn)Vet+un Ve—V.
2 (1 + Ion e v SS>
Ion Tpjas
1
+ 1722 Kp e(an:pfmn Vr+2npfﬁs:n,nn VC)/VT (360)
24'[0n‘[0p
IO (Ibias Il > (1—=kn)Ve+rnVr—Vgg
Ibias Ion Ion

Eqgs.3.59 and 3.60 are numerically solved using the MATLAB'’s fsolve
function using Eq.3.48. Their behavior is presented in Figs.3.50-3.52, which
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confirm the simulation results of Figs.3.42-3.44 and thus the proposed circui-
t’s proper operation. There is only a small dc offset of 300pA between the
theoretical and simulation results because the current correlator’s output
current does not reach zero for zero input currents (non-ideal circuit).

1.5 :
—V_=-300mV
—V_=-180mV
i V =-60mV ||
<t —V =60mV
e Cc
- —V =180mV
S Cc
< =
05 Vv =300mV ||
0 b
-0.3 0.3

Vin (V)

Yyfuo 3.50: Deviation tuning in Theoretical output function of the 3rd bump
circuit, for Ip;qs = 3nA and V,, = 0mV (MATLAB simulation).

10

I . =3nA

bias

8 1, T6nA ||

Tout (nA)

-03 02 -01 0 0.1 0.2 0.3
Vin (V)

Yyfuoe 3.51: Amplitude adjustment in Theoretical output function of 3rd the bump
circuit, for V;, = 0mV and V., = —300mV (MATLAB simulation).
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1 Vr=-20mV Vr=1 00mvV
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E
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Yyfua 3.52: Mean value adjustment in Theoretical output function of the 3rd bump
circuit, for Ip;qs = 3nA and V., = —300mV (MATLAB simulation).

3.9 4th Proposed Gaussian Function Circuit A-
rchitecture And Analysis

In this Section, the proposed architecture and mathematical analysis are
presented. Our architecture, which is shown in Fig.3.53, consists of a modi-
fied, non symmetric current correlator (M — M4 with different dimensions)
and a NMOS differential block (M1 — Mp4 and M,e). The presented arch-
itecture provides a typical Gaussian Function, via output current, as shown
in Fig.3.54, for Iy;qs = 30nA, V. = —300mV and V,,, = OmV. The Gaussian
curve’s height and center are tuned via bias current Ip;,s and parameter
voltage V,,,. In this work, we also have the ability to adjust the Gaussian
curve’s width, via controlled voltage V, (parameter voltage) applied to M,
and Mps transistors’ bulks (triple-nwell transistors), as shown in Fig.3.53.

A mathematical analysis of the proposed bump circuit is presented
below. All transistors operate in the sub-threshold region and we use the
MOS model in [?] same as previous implementations.

3.9.1 NMOS Differential Block Analysis

The NMOS differential block consists of five transistors M,,; — M,4 and
M,¢. Transistors M,3 and M, operate in saturation region and their drain
currents are given by:

I = 201, e(mnVin=Vsarns +(1=Kn)Vss)/Ve (3.61)
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Vop
4
Mp4 Mp2
i
Mpl Mp3 }_l
sam
] ll [out l ] 5
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o L
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Syfua 3.53: 4th Proposed Bump circuit.

ITivaxoc 3.5: MOS Transistors Dimensions.

KEPAANAIO 3. PROPOSED CIRCUIT ARCHITECTURES

NMOS Differential Block W/L Current W/L
(um) Corre- (pm)

lator
M1, M2 2.0/1.0 My ,My3 0.8/0.1
M3, My 2.0/0.1 My, 0.8/0.4
M5, M6 0.2/1.6 M,y 2.4/0.4

I = 201, e"nVm=Vsy, +(1=rn)Vss)/Vr

(3.62)

Transistors M,,; and M9 operate in triode region and their currents are:

I, = 21, ¢fn(Vin=Ve)/Vr (e(vc—vsz _ e(vc—stm)/VT)

(3.63)
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251

201

I, (NA)

-03 -02 -01 00 01 02 0.3
Vin (V)

Eyhua 3.54: Output current of the 4th Bump circuit (Gaussian Function) for Iy;.s =
30nA, V. = =300mV and V,,, = OmV.

I = 2, eV =V/Vr (Ve VOV _ (Ve Vouns)/Vr) (3.64)

In this step we combine Eqgs.3.61 and 3.63 . The new expression of I is
given by:

I = QIone(Nan*VsHl*Nn)Vc)/VT — %@(”nfl)(VSS*VC)/VT (3.65)

Also, we combine Eqs.3.62 and 3.64. The new expression of I is given
by:
I, = 21, (fnVin=Vs+(1=rn)Ve) [V _ ﬂe(ﬁn—l)(Vss—Vc)/VT (3.66)
" 10
The voltage Vs of the eqs.3.65 and 3.66 is given by:

o Vs/vr _ —11 = Io + Dyias (3.67)
Ibiasevss/VT

Combining Eqs.3.65 and 3.67, the expression of I is given by:

Tyelrn—DVe) Ve 4 %ew-l)vss/w
o7 Tvias =D — Iy (e,vi,—Vis)/vr

On
I bias

(3.68)
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Combining Eqs.3.66 and 3.67 the expression of I is given by:

Lyelkn=DV Ve | T2 (wu=1)Vss/ Vi

10
3.69
P Y .
" Ibias
We simplify the equations of current I; and Is:
I
Il - ILI(Ibias - I?) (370)
zl
I
I, = ILQ(Ibias - Il) (371)
x2
The eqgs. of I;1,1y1 and I,2, 1,2 are given by:
1, = Hon p(snVat (1ia)VeVss) Vi (3.72)
Ibias
L =1+ %e(l—ﬁn)(VC—Vss)/VT v, (3.73)
where I, = I,; and Iy = I, for V, =V, and I, = I,5 and Iy = Iy for
Vi = V. Combining Eqgs.3.70 and 3.71, the final eqgs. are:
Il _ Iyllbias(l;w - Iy2) (3.74)
I:L’l—[a:2 - IyIIyQ
I = IyQIbias(Izl - Iyl) (3'75)

lelr2 - Iy1]y2

3.9.2 Modified Current Correlator Analysis

The modified current correlator is the same circuit block that was analysed
in a previous section of the 1st proposed bump circuit so we have:

301
I + 31

Lot = (3.76)
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3.9.3 Proposed Bump Circuit Analysis

Substitution of Eqs.3.74 and 3.75 to 3.76 leads to the following equation
which involves V;,,, Vi, Ipiqs and V:

SIyl-[yQIbias(IIZ - IyQ)(Iml - Iyl)
(IJZ].IIQ - Iylly2)(lyllw2 + 3Iy2Iw1 - 4Iylly2)

Tput = (3.77)

The proposed bump circuit’s behavior is presented in Fig.3.55 using
eq.3.77. The left subfigure shows the Gaussian function’s behavior for con-
stant Ip;.s and various V;, values, while the right subfigure shows changes
caused by altering I;,s, with constant V,,,. Both confirm the proper opera-
tion of the proposed topology.

30 v, =100my/ )/ 30— o
y bias
v, =T7.8mV) — hhigg=10MA
Vp=ssemy || | Iyips=150A
—V=383my | “‘ bias 20NA
20 Va=ttpmv [ \ 1 —~20t Ibias=250A O\
< | ‘ \ Iyips=300A \
<
N—
-
g
~
10+ 107
/ / \\
/ \ \ \ / \\
97228\ / N

0=—— 0 :
-03 02 -01 0 01 02 03 -03-02-01 0 01 02 03
Vin (V) Vin (V)

Yyuo 3.55: Theoretical Output current of 4th Gaussian circuit

3.9.4 Simulation Results

In this work, an ultra low power, fully tunable bulk controlled Gaussian
circuit is evaluated in TSMC 90nm CMOS process, usign Cadence IC design
suite. It is an ultra low power architecture and the power supply rails are
Vbp = —Vsg = 0.3V achieving a power consumption of only 6.0nW and
exhibits proper behavior with bias current down to Iy;,s = 5nA. Moreover,
the center, height and width of the Gaussian function are electronically
programmable.

The confirmation of theoretical analysis is achieved via simulation re-
sults. The output current peak is achieved when input voltage V;, is equal
to parameter voltage V,,,. As a result the Gaussian function’s center is set by
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parameter voltage V,,, as shown in Fig.3.56. The Gaussian function’s height
is scaled through the use of the bias current Ip;.s, in a proportional way, as
shown in Fig.3.57. An alteration in the parameter voltage V., achieves an
adjustment in the output current’s width. An increase in M, and M,s
transistors’ body voltage leads to a width increase, as shown in Fig.3.58.

V= —100mV
V= —77.8mV
V= —55.6mV
V= —33.3mV
V= —-111mV
Vm=11.1mV
Vm =33.3mV
— Vp=55.6mV
Vm=77.8mV
'm=100mV

251

207

It (NA)
=
(0]

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Yyfua 3.56: Output current of 4th Bump circuit via programmable voltage V,,, for
Ipias = 30nA and V., = —300mV.

The sensitivity behavior has been evaluated using the Monte-Carlo a-
nalysis tool for N = 100 runs. The corresponding histogram for the bump
circuit’s center of voltage is shown in Fig.3.59. The center of the voltage is
Vinean = —2.6mV, and the standard deviation is oy = 3.7mV. It confirms
the correct performance and accuracy of the proposed circuit.

In total, 4 different novel circuit architectures for the implementation of
Gaussian functions and multivariate RBF funtions were presented in detail.
All 4 architectures operate with ultra low power consumption and rely on
bulk-control techniques in order to achieve tunability in the Gaussian fu-
nction’s output width. For system level implementation, the architecture of
the 1st presented bump circuit is chosen and modified so as to be used as a
basic building block.
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- Ibias =5nA

251 —— Ipias = 10nA
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Eyhua 3.57: Output current of 4th Bump circuit via bias current, for V., = —300mV
and V,,, = 0mV.

Ve= —300mV
Ve= —180mV

201 Ve= —60mV
Ve =60mV
Ve =180mV
—~ 1 Ve =300mV
< 15
£
5101
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5<
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Yyfua 3.58: Output current of 4th Bump circuit via programmable input voltage
Ve, for Ipias = 25nA and V,,, = 0mV.



92 KEPAANAIO 3. PROPOSED CIRCUIT ARCHITECTURES

No. of Samples
N
o

0

0:

.04

-15 -10 -5 0 5 10 15 20
Center (mV)

Yynua 3.59: Sensitivity performance of 4th Bump circuit using Monte-Carlo analy-
sis.

3.10 RBF Cell

Each RBF cell in the proposed system architecture is composed of a multi-
dimensional bump circuit which has its output current inserted to an analog
multiplier. The multiplier’s output current is the output of the RBF cell.

3.10.1 Modified Gaussian Function Clrcuit for System Level
Implementation

The proposed Gaussian Function circuit architectures are ultra low power
and compact implementations composed by a reduced number of transistors.
However, in order to meet system level requirements with precision a modi-
fied version of the first proposed Gasussian Function circuit is presented in
Fig.3.60. The transistor dimensions are summarized in Table 6.

ITivaxoc 3.6: MOS Transistors Dimensions.

NMOS Differential Block W/L Current W/L

(um) Corre- (pm)
lator
M1, My 1.6/0.4 Mp3,Mpy, 0.4/1.6
Mo, M3 0.8/0.4 My, My, 1.2/1.6
Mn5;Mn67Mn77Mn8 04/16

Mig,My10 1.2/1.6  Mps, My 0.4/1.6
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Firstly,this topology instead of simple current mirrors uses cascode cur-
rent mirrors for biasing of the differencial difference pair. This alteration
provides accurate current mirroring even for very small currents (down to
1nA). Furthermore, a symmetric current correlator is employed, which e-
nchances the symmetry of the Gaussian Function output’s curve. To the
expense of circuit area and power consumption, a more robust circuit archi-
tecture to be used in high dimensional RBF Kernel applications is presented.

1, bias

Mn5

Mn8

Yyfua 3.60: Modified Gaussian Function circuit for system level implementation.

3.10.2 Multiplier Circuit

As mentioned is a previous section, cascaded bump circuits are formed by
using the output current of one bump cell as bias current for the next bump
cell, as shown for an N dimensional cascaded bump circuit in Fig.3.61. In
this configuration, only the first bump cell is biased with a current Ibias
which determines the peak of the mutivariate RBF Kernel. However, it
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can be noticed that when the number of bump cells in such a cascaded
implementation is increased in order to accomodate high dimensional data,
the current scaling caused by Ibias is not entirely linear. This loss of linearity
can be attributed to small inaccuracies of analog circuits which may be
negligible for low dimensional inputs but as more bumps are connected in
series they are accumulated and affect the output current considerably. In
the SVM case in particular, the bias current of each cascaded bump circuit
is the parameter that gets updated during the learning procedure so linear
scaling of the RBF’s output’s current is of paramount importance.

Vop
Ih,-a_‘%) Voo Voo Lo N__,} Voo
1, : 1, : 1, :
ias V [()ll 4 ias V ias V [()u L3
Vm, ; bias DD t] V,-”_, I/’_” bias DD V,-” ] V’_n bia. DD t N-1
Bump 1 Bump 2 L. Bump N-1
01
Vi v, L, Vo —V, L, — S Vo —, L Vin
Ver —V. Ve —{ V. Ve —V, V.
Vss Vss Vss
v v v
Vss Vss Vss

Yyhua 3.61: N-dimensional cascaded bump circuit

In order to achieve accurate linear scaling, the output current of each
cascaded bump circuit is connected to an analog multiplier circuit, depicted
in Fig.3.63. The multiplier consists of 5 transistors, Mn5 — Mn9 and is
a translinear circuit. Translinear circuits operate based on the translinear
principle [59]. In order to define the translinear principle, the concept of
a translinear loop should be introduced. A conceptual translinear loop is
depicted in Fig.3.62. It is made up of BJTs or mosfets transistors operating
in subthreshold that all have their sources connected to the gates of the
next transistor, forming a loop. The arrow in Fig.3.62 indicates the clockwise
direction around the loop. Clockwise translinear elements are the transistors
whose gate-to-source voltage is a voltage decrease in the clockwise direction
of the loop while counterclockwise translinear elements are the transistors
whose gate-to-source voltage is a voltage increase in the clockwise direction
of the loop.

The translinear principle dictates that the product of the currents of the
clockwise translinear elements in a translinear loop is equal to the product
of the currents of the counterclockwise translinear elements of this loop. In
essence, the translinear principle in subthreshold MOS transforms the sum
of gate-to-source voltages across a translinear loop into product of currents.

Vin N

out
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(@)

Eyfua 3.62: Conceptual translinear loop of N subthreshold MOS transistors

The sum of gate-to-source voltages across the loop is a result of Kirchhoff’s
voltage law applied around the loop and its translation to a product of
currents is possible due to the exponential characteristics of the subthreshold
mosfet’s current with respect to its gate-to-source voltage.

In the proposed translinear multiplier circuit transistors Mnb, Mn6,
Mn8 and Mn9 form a translinear loop with a so-called alternating loop
topology which produces an output current independent of the subthreshold
slope factor k. Supposing that all four transistors operate in subthreshold
saturation region and based on the translinear principle the multiplier’s
output current is the following;:

IbIbias

T (3.78)

Iout =
where Ib is the cascaded bump circuit’s output current, Ibias the multiplying
term and Imul a normalizing constant current. Transistor Mn7 is used
for proper biasing of the translinear loop. Furthermore, cascode NMOS
and PMOS current mirrors have been used to achieve more precise current
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mirroring. The multiplier circuit’s transistor dimensions are summarized in
Table 7.

V
Voo Mpl . MpZE £ jj Mp6E
I, Mp3 jﬂ Mp4E D jj MP8E

Mnl Mn2 Mn5 Mn6 |
N JEL———4E

Mn3 Mn4

&out

Mn7

v
VSS

Yyfua 3.63: Analog Multiplier circuit.

ITivaxag 3.7: Multiplier’s MOS Transistors Dimensions.

Current Mirrors W/L TranslineaitW /L

(¢bm)  Loop  (um)

M1, M2, Mz, Mps  0.4/1.6  Mys,Mpg 0.4/1.6

My My Moz My 04/1.6 Mg 3.6/1.6

My, My, Myz, Mys — 0.4/1.6 My 4/1.6
M, 1.2/0.8

The contribution of the multiplier circuit in achieving linear scaling of
the RBF cell’s output current is evident in Fig.3.64.

In this figure the peak of a 16 — D RBF cell’s output current is depicted,
for all input and parameter voltages of all the bump circuits that comprise
the cell being equal to 0.

Ibump is the output current of the 16— D cascaded bump circuit when its
peak is scaled by the bias current of the first bump circuit of the cell. Tout is
the peak of the output current if a multiplier is used. The desirable linearity
is achieved, with the output current having only a small and constant dc
offset compared to Ibias which is the multiplier’s input current that sets the
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Yyhua 3.64: Effect of multiplier on output current.
height.

Instead of controlling the peak of the RBF output current through the
bias current of the cascaded bump architecture, the cascaded bump circuit
is biased with a constant bias current of 16nA. The output current of the
cascaded bump is inserted as Ib to the multiplier circuit of Fig.3.63. which is
also biased with constant bias current I'mul = 16nA. Thus,The heigt of the
RBF cell’s output current is determined by the multiplier’s input current
Ibias. This is the current that corresponds to the Lagrange Multipliers and
realizes SVM’s update rule.

3.11 Switch Cell

In the learning block, in order to satisfy the hardware-friendly SVM update
rule, the product of the two learning samples’labels has to be multiplied
with each Kernel. As the labels are either 1 or -1, the result of this product
is either the positive or the negative Kernel’s value for the specific learning
samples. Thus, the output current of each RBF cell which represents the
Kernel’s value should be driven as a positive value I, or as a negative value
I,.The positive value I, corresponds to Y1 = Y2 while the negative value I,
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corresponds to Y1 = —Y2. The labels are represented with voltages, with
a positive label corresponding to the positive power supply voltage and a
negative label corresponding to the negative power supply voltage.

The selective driving of the RBF cell’s current through either I, or I, is
achieved via a switch circuit. The switch circuit is depicted in Fig.3.65 and
essentialy implements an XOR gate. For inputs Y1 = Y2 RBF’s current
Iy;qs flows through Mpb as I, while for inputs Y1 = —Y2 RBF’s current
Tpiqs flows through Mp4 as I,. This XOR gate implementation is compact
area efficient as it consists of only 6 transistors, unlike the XOR gate of
CMOS static logic which consists of 8 transistors. The switch cell’s transistor
dimensions are summarized in Table 8.

+—¥ Mpl [“Mp2 ’—{EMp3

Mnl Mn?2

v
VSS

Yyfua 3.65: Switch circuit.

ITivaxac 3.8: Switch’s MOS Transistors Dimensions.

W/L (pm)

MplaManMpZ& 0.8/0.2 Mp4,Mp5 0.4/1.6
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3.12 Adjuster Circuit

The hardware friendly SVM update rule of Eq. 2.10 can be transformed in
the following current equation:

Inew, = min(Icon, max(0, Icon — y; Z#m YmIm)) (3.79)

where I, is the updated value of the bias current of the iy, RBF cell
and Icon is a parameter current corresponding to regularization parameter
C of SVM. The adjuster is the circuit that performs these non-linear mini-
mum and maximum operations and also performs iterations on the above
mentioned equation forming a feedback loop to update the current values.

The adjuster circuit is depicted in Fig.3.66. It is a current mirror based
circuit with parameter bias current Icon = 40nA and the following input
currents:

I, = Zyi:ym Iy, I, = Zyﬁéyk I, for the 4y, adjuster circuit. The min
and max operations are realized by the unilateral current flow in NMOS
transistors Mn6 whose current can not be lower than zero and Mn7 whose
current may not exceed the value of I.,,. Fig.3.67 demonstrates the proper
operation of the adjuster circuit for input currents I, , different values of
I, and I.,, = 30nA. The adjuster circuit exhibits the desirable behaviour
based on the following expression:

It = min(Icon, max(0, Icon — I, + I) (3.80)
VDD
4
E| Ig .o

| 1 —
Mpl ,_I Mp2 Mp3 Mp4 Mp5

4 v, v,

DD DD DD Ioutl [o
Iy ]x Icon
Mn2 Mn4 |
Mnl n Mn3 n N Mns Mn6 Mn7[:
v
VSS

Yyfua 3.66: Adjuster circuit.

utM
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ITivaxoc 3.9: Adjuster’s MOS Transistors Dimensions.

W/L (pm)

M1, Mo 0.4/6.4
My3, My 0.4/6.4
M5, Mg, M7 0.4/6.4
My, My, 0.4/6.4
My3,M,, 0.4/6.4

Mys, M6, My 0.4/6.4

301 —— I,=0nA
I, = 4nA
25 —— I, =8nA
— I,=12nA
320- —— I, =16nA
c —— 1, =20nA
157
3
10+
5_
0- T T T T T T
0 10 20 30 40 50
ly (nA)

Yyfuo 3.67: Adjuster output current.

3.13 Proposed Winner-Take-All Circuit

The Winner-Take-All circuit is a circuit that receives N input signals and
presents in the output the response of only the largest input signal while
supressing the responses of the other N — 1 inputs. In essence, the WTA
circuit implements a max() function. There have been several voltage mode
WTA circuit implementations[93] 94, 95] as well as analog current mode W-
TA circuits[96, 97,08, [99] . All such current mode WTA circuit architectures
are modifications of the original WTA circuit presented by Lazzaro(1989).
The circuit architecture of the simple WTA circuit for two inputs and
a NMOS and a PMOS implementation are presented in Figs.3.68 and 3.69
respectively.For the NMOS case, the simple WTA circuit is composed of
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Yyhuo 3.68: Simple NMOS Winner-Take-All Circuit.
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V I, bias V
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Mp4
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Syuo 3.69: Simple PMOS Winner-Take-All Circuit.

4 NMOS transistors of the same W and L operating in subthreshold and a
constant current source Ibias.The transistors’ dimensions are summarized in
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Table 3.10. For input currents I;,1 = Lipo then I 1 = Ipyte = 0.513;45. Due
to the fact that Mnl and Mn4 have the same Vg voltage, for input currents
Iin1 > Iipo it follows that Vo, . = Vaune > Vouns = VDame- Supposing
that both output transistors Mn2 and Mn3 operate in saturation and due
to the fact that they both have the same source voltage a small difference in
their gate voltages results in an exponentially larger difference in the output
currents. In this case, I 11 = Ipigs and I = 0. Thus, for input currents
differing by a sufficient amount, only the output current corresponding to
the largest input current will be nonzero.

The WTA circuit can be extended to accomodate multiple inputs. In
our case however two inputs are required in order for the circuit to compare
the positive and the negative Kernel values and perform classification based
on SVM decision rule.

In the proposed circuit architecture, instead of using a simple NMOS or
PMOS WTA circuit, a triple WTA circuit is used, depicted in Fig.3.70. It
consists of a NMOS,a PMOS and another NMOS WTA circuits connected
in series, with the output currents of the one WTA block being the input
currents to the next one. All 3 WTA blocks are biased with the same con-
stant Ibias = 40A and essentially perform the max() function 3 consecutive
times.

TItvoxac 3.10: WTA’s MOS Transistors Dimensions.

W/L (um)
My, Mo 0.4/1.6
My, My 0.4/1.6
My, My, 0.4/1.6
My3, M, 0.4/1.6

In Fig.3.71 it can be observed that by using the triple WTA circuit as
opposed to the simple architecture, the minimum current difference required
by the WTA system to differentiate its inputs is cut down in half. As a result,
the accuracy of the classification procedure is increased.
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Proof of Concept Classifier

4.1 Application Specific Classifier Architecture

The successful operation and efficiency of the proposed system archite-
cture for SVM learning and classification is tested and verified using a
real dataset[I00]. The dataset is taken from Mendeley Data and is cal-
led:”Bearing Vibration Data under Time-varying Rotational Speed Condi-
tions”. The data contain vibration signals collected from bearings of diffe-
rent health conditions under time-varying rotational speed conditions. In
order to use this data for SVM learning and classification, 2 of the total
classes of the dataset are chosen for each test. After python processing of
the data, 13 features are extracted.

These features are then converted to analog voltages between -300mV
and 300mV which are the negative and positive supply rails of the hardware
architecture respectively. Thus, the inputs of the system are analog voltage
vectors of N=13 dimensions. Due to the fact that the size of the learning
block’s matrix of RBF cells scales proportionally to the square of learning
samples, we choose to use 8 learning samples(8 vectors of 13dimensions) for
the learning block. This results in 64 RBF cells, each of which consists of
a cascaded 13-dimensional bump circuit and a multiplier. Also, 56 switch
cells are used in the learning block as well as 8 adjuster circuits with each
one producing 9 copies of its output current.

The classification block consists of 8 RBF cells, 8 switches and a two-
input WTA circuit. Apart from the learning samples which are inserted
to the system to commence the learning procedure, test samples(vectors
of 13 dimensions) are sequentially inserted to the system in the form of
analog voltages. The on-chip learning phase proceeds autonomously and the
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values of the Lagrange multipliers are determined without any clock-based
iterations. The classification phase is dictated by a clock with a period
of 10us. During each cycle, a new testing sample is being inserted to the
classification block and categorized.

4.2 Classifier Simulation Results

In Figs.4.1-4. the output currents of the WTA circuit are depicted in the
time domain. For the clock cycles that I, = 40nA and I,uo = 0 then
the test sample corresponding to the specific cycle is categorized in class
1. Similarly, for the clock cycles that I,,o = 40nA and I, = 0 then the
test sample corresponding to the specific cycle is categorized in class 2. The
observed current values that exceed 40nA are transient spikes of very small
duration compared to the clock cycle and do not affect the classification
results. The classification results for categorization between the 1st and
the 2nd class of the total dataset are depicted in Figs.4.1 and 4.2 while the
classification results for categorization between the 1st and the 3rd class
of the total dataset are depicted in Figs.4.3 and 4.4. In Figs. 4.1 and 4.3
the classification result for the whole dataset is presented, with 2.5ms total
classification time. In these 2 Figures the vertical red dotted lines represent
the end point of the time period of 500us which is magnified and depicted in
Figs 4.2 and 4.4 in order to more clearly demonstrate the system’s operation.
The performance of the system was tested and validated in comparison to
a standard software SVM implementation with python for the same dataset
and number of learning samples. For the case of classification between the
first and the second class of the dataset, the simulated hardware architecture
achieved a validation accuracy of 83% while Python validation accuracy was
84%. For the case of classification between the first and the third class of the
dataset, the simulated hardware architecture achieved a validation accuracy
of 94% while Python validation accuracy was 93%. The errors between
software and the proposed hardware implementation are minimal, which
proves the correct operation and the efficacy of the presented architecture.
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Conclusion and Future Work

In this work, a fully analog, ultra low power and massively parallel hardware
architecture for the implementation of SVM with on-chip learning capablity
was presented. The system level architecture was analysed and its basic
building blocks were discussed in detail in transistor level. Four different
novel circuit architectures were presented for the analog hardware realization
of RBF Kernels,as well as multipliers, switches, adjusters and WTA circuits.
The proposed circuit architecture performs both learning and classification
in an entirely analog fashion and includes very low power circuit building
blocks. It performs efficiently in binary classification problems, as it was
tested with a real dataset and presented errors no more than 1% compared
to a traditional software implementation.

Future work related to this hardware architecture could include layout
and chip fabrication and measurements of the proposed circuitry. Further-
more, analog and low power circuits for memory storage interfacing with the
proposed architecture could be designed, with the aim of storing parameter
values. This architecture could also be scaled in order to accomodate input
vectors of higher dimension than 13 and with more available learning samples
than 8,as it was the case in this work. Apart from SVM implementation,
the basic building blocks of this architecture could be further optimized and
used in other machine learning hardware implementations, such as other
Kernel Methods, Gaussian Mixure Models, K-Nearest Neighbors Algorithm
and others.
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